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Abstract

What do auto-encoders learn about the underlying data generating distribution?
Recent work suggests that some auto-encoder variants do a good job of capturing
the local manifold structure of the unknown data generating density. This paper
clarifies some of these previous intuitive observations by showing that minimiz-
ing a particular form of regularized reconstruction error yields a reconstruction
function that locally characterizes the shape of the data generating density. More
precisely, we show that the auto-encoder captures the score (derivative of the log-
density with respect to the input) or the local mean associated with the unknown
data-generating density. This is the second result linking denoising auto-encoders
and score matching, but in way that is different from previous work, and can be
applied to the case when the auto-encoder reconstruction function does not neces-
sarily correspond to the derivative of an energy function. The theorems provided
here are completely generic and do not depend on the parametrization of the auto-
encoder: they show what the auto-encoder would tend to if given enough capacity
and examples. These results are for a contractive training criterion we show to
be similar to the denoising auto-encoder training criterion with small corruption
noise, but with contraction applied on the whole reconstruction function rather
than just encoder. Similarly to score matching, one can consider the proposed
training criterion as a convenient alternative to maximum likelihood, i.e., one not
involving a partition function. Finally, we make the connection to existing sam-
pling algorithms for such autoencoders, based on an MCMC walking near the
high-density manifold.

1 Introduction

Machine learning is about capturing aspects of the unknown distribution from which the observed
data are sampled (the data-generating distribution). For many learning algorithms and in particular
in manifold learning, the focus is on identifying the regions (sets of points) in the space of exam-
ples where this distribution concentrates, i.e., which configurations of the observed variables are
plausible.

Unsupervised representation-learning algorithms attempt to characterize the data-generating dis-
tribution through the discovery of a set of features or latent variables whose variations capture
most of the structure of the data-generating distribution. In recent years, a number of unsuper-
vised feature learning algorithms have been proposed that are based on minimizing some form of
reconstruction error, such as auto-encoder and sparse coding variants (Olshausen and Field, 1997;
Bengio et al., 2007; Ranzato et al., 2007; Jain and Seung, 2008; Ranzato et al., 2008; Vincent et al.,
2008; Kavukcuoglu et al., 2009; Rifai et al., 2011a,b; Gregor et al., 2011). An auto-encoder recon-
structs the input through two stages, an encoder function f (which outputs a learned representation
h = f(x) of an example x) and a decoder function g, such that g(f(x)) ≈ x for most x sampled
from the data-generating distribution. These feature learning algorithms can be stacked to form
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deeper and more abstract representations. Deep learning algorithms learn multiple levels of repre-
sentation, where the number of levels is data-dependent. There are theoretical arguments and much
empirical evidence to suggest that when they are well-trained, deep learning algorithms (Hinton
et al., 2006; Bengio, 2009; Lee et al., 2009; Salakhutdinov and Hinton, 2009; Bengio and Delalleau,
2011) can perform better than their shallow counterparts, both in terms of learning features for the
purpose of classification tasks and for generating higher-quality samples.

Here we restrict ourselves to the case of continuous inputs x ∈ Rd with the data-generating dis-
tribution being associated with an unknown target density function, denoted p. Manifold learning
algorithms assume that p is concentrated in regions of lower dimension (Cayton, 2005; Narayanan
and Mitter, 2010), i.e., the training examples are by definition located very close to these high-
density manifolds. In that context, the core objective of manifold learning algorithms is to identify
where the density concentrates.

Some important questions remain concerning many of feature learning algorithms based on recon-
struction error. What is their training criterion learning about the input density? Do these algorithms
implicitly learn about the whole density or only some aspect? If they capture the essence of the target
density, then can we formalize that link and in particular exploit it to sample from the model? This
would turn these algorithms into implicit density models, which only define a density indirectly, e.g.,
through the estimation of statistics or through a generative procedure that converges to it. These are
the questions to which this paper contributes.

The paper is divided in two sections, along with detailed appendices with proofs of the theorems.
See the supplementary document to this article for the appendices. The first section makes a direct
link between denoising auto-encoders (Vincent et al., 2008) and contractive auto-encoders (Rifai
et al., 2011a), justifying the interest in the contractive training criterion studied in the rest of the
paper. The second and main section regards the following question: when minimizing that criterion,
what does an auto-encoder learn about the data generating density? The answer is that it estimates
the score (first derivative of the log-density), i.e., the direction in which density is increasing the
most, which also corresponds to the local mean, which is the expected value in a small ball around
the current location. Finally, we briefly introduce the connection with a stochastic diffusion equation
associated with the Langevin MCMC that motivates a sampling algorithm based on the estimated
score.

The order of presentation for the results in the appendices follows the mathematical development.
This differs slightly from the order in which we present results in this paper and it leaves certain gaps.
This tradeoff was made so that any result in the paper could easily be looked up in the appendices
by searching for the one bearing the same name or number.

2 Contractive and Denoising Auto-Encoders

Regularized auto-encoders (see Bengio et al. (2012b) for a review and a longer exposition) capture
the structure of the training distribution thanks to the productive opposition between reconstruc-
tion error and a regularizer. An auto-encoder maps inputs x to an internal representation (or code)
f(x) through the encoder function f , and then maps back f(x) to the input space through a decoding
function g. The composition of f and g is called the reconstruction function r, with r(x) = g(f(x)),
and a reconstruction loss function ` penalizes the error made, with r(x) viewed as a prediction of
x. When the auto-encoder is regularized, e.g., via a sparsity regularizer, a contractive regularizer
(detailed below), or a denoising form of regularization (that we find below to be very similar to a
contractive regularizer), the regularizer basically attempts to make r (or f ) as simple as possible,
i.e., as constant as possible, as unresponsive to x as possible. It means that f has to throw away
some information present in x, or at least represent it with less precision. On the other hand, to
make reconstruction error small, examples that are neighbors on a high-density manifold must be
represented with sufficiently different values of f(x) or r(x). Otherwise, it would not be possible
to distinguish and hence correctly reconstruct these examples. It means that the derivatives of f(x)
or r(x) in the directions along the manifold must remain large, while the derivatives (of f or r) in
the x-directions orthogonal to the manifold can be made very small. This is illustrated in Figure 1
below. In the case of Principal Components Analysis, one constrains the derivative to be exactly 0 in
the directions orthogonal to the chosen projection directions, and around 1 in the chosen projection
directions. In regularized auto-encoders, f is non-linear, meaning that it is allowed to choose differ-
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Figure 1: Regularization forces the auto-encoder to become less sensitive to the input, but minimiz-
ing reconstruction error forces it to remain sensitive to variations along the manifold of high density.
Hence the representation and reconstruction end up capturing well variations on the manifold while
mostly ignoring variations orthogonal to it.

x"

r(x)"

x1" x2" x3"

Figure 2: The reconstruction function r(x) (in green) learned by an autoencoder on a 1-dimensional input with
high capacity, minimizing reconstruction error at the training examples xi (with in r(xi) in red) while trying
to be as constant as possible otherwise (large λ). The figure is used to exagerate and illustrate the effect of the
regularizer. The dotted line is the identity reconstruction (which might be obtained without the regularizer).
The blue arrows shows the vector field of r(x) − x pointing towards high density peaks as estimated by the
model, and estimating the score (log-density derivative).

.

ent principal directions (those that are well represented, i.e., ideally the manifold tangent directions)
at different x’s, and this allows a regularized auto-encoder with non-linear encoder to capture non-
linear manifolds. Figure 2 illustrates the extreme case when the regularization is very strong (r(·)
wants to be nearly constant where density is high) in the special case where the distribution is highly
concentrated at three points (three training examples). It shows the compromise between obtaining
the identity function at the training examples and having a flat r near the trainign examples, yielding
a r(x)− x that points towards the high density points.

Here we show that the Denoising Auto-Encoder (Vincent et al., 2008) with very small Gaussian cor-
ruption and squared error loss is actually a particular kind of Contractive Auto-Encoder (Rifai et al.,
2011a), contracting the whole auto-encoder reconstruction function rather than just the encoder,
whose contraction penalty coefficient is the magnitude of the perturbation.

The Contractive Auto-Encoder or CAE (Rifai et al., 2011a) is a particular form of regularized auto-
encoder which is trained to minimize the following regularized reconstruction error:

LCAE = E

[
`(x, r(x)) + λ

∥∥∥∥∂f(x)
∂x

∥∥∥∥2

F

]
(1)

where r(x) = g(f(x)) and ||A||2F is the sum of the squares of the elements of A. Both the squared
loss `(x, r) = 1

2 ||x−r||
2 and the cross-entropy loss `(x, r) = −x log r−(1−x) log(1−r) have been

used, but here we focus our analysis on the squared loss because of the easier mathematical treatment
it allows. Note that success in minimizing the above criterion strongly depends on the parametriza-
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tion of f and g and in particular on the tied weights constraint used, with f(x) = sigmoid(Wx+ b)
and g(h) = sigmoid(WTh + c). The above regularizing term forces f (as well as g, because of
the tied weights) to be contractive, i.e., to have singular values less than 1 1. Larger values of λ
yield more contraction (smaller singular values) where it hurts reconstruction error the least, i.e., in
the local directions where there are only little or no variations in the data. These typically are the
directions orthogonal to the manifold of high density concentration.

The Denoising Auto-Encoder or DAE (Vincent et al., 2008) is trained to minimize the following
denoising criterion:

LDAE = E [`(x, r(N(x)))] (2)

where N(x) is a stochastic corruption of x and the expectation is over the training distribution
and the corruption noise source. Here we consider mostly the squared loss and Gaussian noise
corruption, again because it is easier to handle them mathematically.
Theorem 1. When using corruption noise N(x) = x+ ε with

ε ∼ N
(
0, σ2I

)
,

the objective function LDAE is

LDAE =
1
2

(
E
[
‖x− r(x)‖2

]
+ σ2E

[∥∥∥∥∂r(x)
∂x

∥∥∥∥2

F

])
+ o(σ2)

as σ → 0.

Proof. With a Taylor expansion around x we have that

r(x+ ε) = r(x) +
∂r(x)
∂x

ε+ o(σ2).

Substituting this into LDAE we have that

LDAE = E
[

1
2

∥∥∥x− (r(x) + ∂r(x)
∂x ε+ o(σ2)

)∥∥∥2
]

= 1
2

(
E
[
‖x− r(x)‖2

]
− 2E[ε]TE

[
∂r(x)
∂x

T
(x− r(x))

])
+ 1

2Tr
(
E
[
εεT
]
E
[
∂r(x)
∂x

T ∂r(x)
∂x

])
+ o(σ2)

= 1
2

(
E
[
‖x− r(x)‖2

]
+ σ2E

[∥∥∥∂r(x)
∂x

∥∥∥2

F

])
+ o(σ2) (3)

where in the second line we used the independance of the noise from x and properties of the trace,
while in the last line we used E

[
εεT
]

= σ2I and E[ε] = 0 by definition of ε.

This derivation shows that the DAE with small corruption is similar to a Contractive Auto-Encoder
but where the contraction is imposed explicitly on the whole reconstruction function r(·) = g(f(·))
rather than on f(·) alone (in the CAE there is a also a contractive effect on g(·) as a side effect of
the parametrization with weights between f(·) and g(·)).

This analysis motivates the study in the rest of this paper of the following training criterion: con-
tractive penalty on the reconstruction plus squared reconstruction loss:

L = E

[
‖r(x)− x‖2 + λ

∥∥∥∥∂r(x)
∂x

∥∥∥∥2

F

]
. (4)

This is an analytic version of the denoising criterion with small noise λ = σ2, and also corresponds
to a contractive auto-encoder with contraction on both f and g, i.e., on r.

1Note that an auto-encoder without any regularization would tend to find many leading singular values near
1 in order to minimize reconstruction error, i.e., preserve input norm in all the directions of variation present in
the data.
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3 Minimizing the Loss to Recover Local Features of p(·)

3.1 Solution from Calculus of Variations

The central result of this paper is that in a non-parametric setting (without parametric constraints on
r) the loss function defined by (4) can be solved asymptotically as λ → 0. The exact meaning of
this claim is made clearer in the following theorem.
Theorem 2. Let p be a probability density function that is continuously differentiable once and with
support Rd (i.e. ∀x ∈ Rd we have p(x) 6= 0). Let L be the expected loss functional defined by

L(r) =
ˆ

Rd
p(x)

[
‖r(x)− x‖22 + λ

∥∥∥∥∂r(x)
∂x

∥∥∥∥2

F

]
dx (5)

for r : Rd → Rd assumed to be continuously differentiable once, and 0 < λ ∈ R used as factor to
the penalty term.

Then the optimal function r∗(x) that minimizes L is such that

r∗(x) = x+ λ
∂ log p(x)

∂x
+ o(λ) as λ→ 0.

The proof is given in the appendix and uses the Euler-Lagrange equations from the calculus of
variations.

The idea that the scaling factor λ > 0 of the penalty term is brought to very small values is related
to Theorem 1 where the scaling factor σ is also studied for the asymptotic behavior as σ → 0.

3.2 Empirical Loss

In an experimental setting, the expected loss (5) is replaced by the empirical loss

L̂ =
1
N

N∑
n=1

(∥∥∥r(x(n))− x(n)
∥∥∥2

2
+ λ

∥∥∥∥ ∂r(x)
∂x

∣∣∣∣
x=x(n)

∥∥∥∥2

F

)

based on a sample
{
x(n)

}N
n=1

drawn from p(x).

Alternatively, the auto-encoder is trained online (by stochastic gradient updates) with a stream of
examples x(n), which corresponds to performing stochastic gradient descent on the expected loss
(5). In both cases we obtain an auto-encoder that approximately minimizes the expected loss.

An interesting question is the following: what can we infer from the data generating density when
given an autoencoder reconstruction function r(x)?

The premise is that this autoencoder r(x) was trained to approximately minimize a loss function
that has exactly the form of (5) for some λ > 0. This is assumed to have been done through min-
imizing the empirical loss and the distribution p was only available indirectly through the samples{
x(n)

}N
n=1

. We do not have access to p or to the samples. We have only r(x) and maybe λ.

We will now discuss the usefulness of r(x) based on different conditions such as the model capacity
and the value of λ.

3.2.1 Perfect World Scenario

As a starting point, we will assume that we are in a perfect situation, i.e., with no constraint on r
(non-parametric setting), an infinite amount of training data, and a perfect minimization. We will see
what can be done to recover information about p in that ideal case. Afterwards, we will drop certain
assumptions one by one and discuss the possible paths to getting back some information about p.

We use rλ(x) notation when we want to emphasize the fact that the value of r(x) came from mini-
mizing the loss with a certain fixed λ.
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Suppose that rλ(x) was trained with an infinite sample drawn from p. Suppose also that it had
infinite (or sufficient) model capacity and that it is capable of achieving the minimum of the loss
function (5) while satisfying the constraints that ∂r(x)

∂x exists and is continuous. Suppose that we
know the value of λ and that we are working in a computing environment of arbitrary precision (i.e.
no rounding errors).

As shown by Theorem 2, we would be able to get numerically the values of ∂ log p(x)
∂x at any point

x ∈ Rd by simply evaluating
rλ(x)− x

λ
→ ∂ log p(x)

∂x
as λ→ 0. (6)

In the setup described, we do not get to pick values of λ so as to take the limit λ → 0. However,
it is assumed that λ is already sufficiently small that the above quantity is close to ∂ log p(x)

∂x for all
intents and purposes.

3.2.2 Simple Numerical Example

To give an example of this in one dimension, we will show what happens when we train a non-
parametric model r̂(x) to minimize numerically the loss (5) relative to p(x).

The distribution p(x) studied is shown in Figure 3 and it was created to be simple enough to illustrate
the mechanics.

(a) p(x) and (r̂(x)− x) /λ (b) p(x) and q(x) ∝ exp
“´ x r̂(y)−y

λ
dy

”
Figure 3: Left (a): the data generating density p(x) along with the estimated score r(x)−x

λ . Right (b):
in the one-dimensional case, one can directed convert the estimated score into an estimated density
q by simply summing the score from left to right.

The model r̂(x) is fitted by dividing the interval [−10, 10] into M = 1000 partition points
x1, . . . , xM evenly separated by a distance ∆. We then minimize numerically the loss function

M∑
i=1

p(xi)∆ (r̂(xi)− xi)2 + λ

M−1∑
i=1

p(xi)∆
(
r̂(xi+1)− r̂(xi)

∆

)2

.

Every value r̂(xi) for i = 1, . . . ,M is treated as a free parameter. Setting to 0 the derivative with
respect to the r̂(xi) yields a system of linear equations in M unknowns. It can be solved exactly and
this solution is plotted in Figure 3(a).

As expected, we get into numerical instabilities as λ becomes too small, but for λ = 10−4 we
can verify that maxxi∈[−10,10] |p(x)− q(x)| ≤ 2.6× 10−4 for the properly normalized distribution

q(x) ∝ exp
(∑

xi<x
r̂(xi)−xi

λ

)
, and this is visually seen as a good fit to the data generating density

p in Figure 3(b).
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This example supports the claim of Theorem 2. That is, the minimizer of the loss 5 behaves as
x+ λ∂ log p(x)

∂x + o(λ) as λ→ 0. This is illustrated by showing how the best numerical solution to a
discretized version of the problem has exactly that behavior.

3.2.3 Missing λ

When we are in the same setting as in section 3.2.1 but the value of λ is unknown, we can modify (6)
a bit and avoid dividing by λ. That is, for a trained reconstruction function r(x) given to us we just
take the quantity r(x)−x and it should be approximatively the score up to a multiplicative constant.

r(x)− x ∝ ∂ log p(x)
∂x

Equivalently, if one estimates the density via an energy function (minus the unnormalized log den-
sity), then x− r(x) estimates the gradient of the energy function.

We still have to assume that λ is small. Otherwise, if the unknown λ is too large we might get a poor
estimation of the score.

3.2.4 Relation to Denoising Score Matching

Naturally, the driving assumption behind the above statements is still that r(x) minimizes a loss
of the form (5) for some p(x) and λ. If it comes from any other procedure, or if it is limited in
capacity (because we are in a parametric setting not including or close enough to the target function)
and cannot achieve the minimum of (5), then more work is needed to be able to provide formal
guarantees.

However, a reassuring and very related result was obtained by Vincent (2011). Motivated by the
analysis of denoising auto-encoders, it is concerned with the case where we explicitly parametrize
a score function ψ(x) and we stochastically corrupt the original samples x ∼ p to obtain noisy
samples x̃ ∼ qσ(x̃|x). In particular, the article analyses the case where qσ adds Gaussian noise of
variance σ2 to x. The main result is that minimizing the expected square difference between ψ(x̃)
and the score of qσ(x̃|x),

Ex,x̃[||ψ(x̃)− ∂qσ(x̃|x)
∂x̃

||2],

is equivalent to performing score matching (Hyvärinen, 2005) with estimator ψ(x̃) and target density
qσ(x̃) =

´
qσ(x̃|x)p(x)dx, where p(x) generates the training samples x. Note that when a finite

training set is used, qσ(x̃) is simply a smooth of the empirical distribution (e.g. the Parzen density
with Gaussian kernel of width σ). When the corruption noise is Gaussian, qσ(x̃|x)

∂x̃ = x−x̃
σ2 , from

which we can deduce that if we define a reconstruction function

r(x̃) = x̃+ σ2ψ(x̃), (7)

then the above expectation is equivalent to

Ex,x̃[||r(x̃)− x̃
σ2

− x− x̃
σ2
||2] =

1
σ2
Ex,x̃[||r(x̃)− x||2]

which is the denoising criterion. This says that when the reconstruction function r is parametrized
so as to correspond to the score ψ of a model density (as per eq. 7), the denoising criterion on r
with Gaussian corruption noise is equivalent to score matching with respect to a smooth of the data
generating density, i.e., a regularized form of score matching. Note that this regularization appears
desirable, because matching the score of the empirical distribution (or an insufficiently smoothed
version of it) could yield undesirable results when the training set is finite. Since score matching has
been shown to be a consistent induction principle (Hyvärinen, 2005), it means that this denoising
score matching (Vincent, 2011; Kingma and LeCun, 2010; Swersky et al., 2011) criterion recovers
the underlying density, up to the smoothing induced by the noise of variance σ2. By making σ2

small, we can make the estimator arbitrarily good (and we would expect to want to do that as the
amount of training data increases). Note the correspondance of this conclusion with the results
presented here, which show that (1) λ = σ2 and (2) that minimizing the equivalent analytic criterion
(based on a contraction penalty) estimates the score when λ is small. The difference is that our result
holds even when r is not parametrized as per eq. 7, i.e., is not forced to correspond with the score
function of a density.
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3.3 Local Mean

What previous work on denoising and contractive auto-encoders suggest is that regularized auto-
encoders can capture the local structure of the density through the value of the encoding (or recon-
struction) function and its derivative. In particular, Rifai et al. (2012); Bengio et al. (2012a) argue
that the first and second derivatives tell us in which directions it makes sense to randomly move
while preserving or increasing the density, thereby justifying sampling procedures. This motivates
us here to study so-called local moments as captured by the auto-encoder, and in particular the local
mean, following the definitions introduced in Bengio et al. (2012a).

3.3.1 Definitions for Local Distributions

Let p be a continuous probability density function with support Rd. That is, ∀x ∈ Rd we have that
p(x) 6= 0. We define below the notion of a local ballBδ(x0), along with an associated local density,
which is the normalized product of p with the indicator for the ball:

Bδ(x0) = {x s.t. ‖x− x0‖2 < δ}

Zδ(x0) =
ˆ
Bδ(x0)

p(x)dx

pδ(x|x0) =
1

Zδ(x0)
p(x)I (x ∈ Bδ(x0))

where Zδ(x0) is the normalizing constant required to make pδ(x|x0) a valid pdf for a distribution
centered on x0. The support of pδ(x|x0) is the ball of radius δ around x0 denoted by Bδ(x0). We
stick to the 2-norm in terms of defining the balls Bδ(x0) used, but everything could be rewritten in
terms of another p-norm to have slightly different formulas.

We use the following notation for what will be referred to as the first two local moments (i.e. local
mean and local covariance) of the random variable described by pδ(x|x0).

mδ(x0)
def
=
ˆ

Rd
xpδ(x|x0)dx

Cδ(x0)
def
=
ˆ

Rd
(x−mδ(x0))(x−mδ(x0))T pδ(x|x0)dx

Based on these definitions, one can prove (in appendix) the following theorem.

Theorem 3. Let p be of class C3 and represent a probability density function. Let x0 ∈ Rd with
p(x0) 6= 0. Then we have that

mδ(x0) = x0 + δ2 1
d+ 2

∂ log p(x)
∂x

∣∣∣∣
x0

+ o
(
δ3
)
.

This links the local mean of a density with the score associated with that density. Combining this
theorem with Theorem 2, we obtain that the optimal reconstruction function r∗(·) also estimates the
local mean:

mδ(x)− x =
δ2

λ(d+ 2)
(r∗(x)− x) +A(δ) + δ2B(λ) (8)

for error terms A(δ), B(λ) such that

A(δ) ∈ o(δ3) as δ → 0,
B(λ) ∈ o(1) as λ→ 0.

This means that we can loosely estimate the direction to the local mean by the direction of the
reconstruction:

mδ(x)− x ∝ r∗(x)− x. (9)
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4 Sampling with Diffusion

The sampling algorithm from Bengio et al. (2012a), inspired from Rifai et al. (2012), proposes a way
to sample from a distribution p if we have access to its local meanmδ(x) and local covarianceCδ(x).
Basically, these sampling algorithms proceed in steps where the next sample xt+1 is obtained by a
sample from a Gaussian whose mean and covariance are respectively mδ(xt) and Cδ(xt). What we
have shown above is that the regularized auto-encoder estimates both the score and the local mean.

4.1 Diffusion equation as justification

Towards better understanding what happens when we use the estimated score or estimated local
mean to drive random moves we can turn to stochastic differential equations. More precisely, we
want a diffusion equation whose discretization would match the sampling methods described in Ben-
gio et al. (2012a) and Rifai et al. (2012). Here we focus on the local mean and leave the study of
the local covariance to future work, but we show that in principle the local mean or estimated score
is already sufficient to sample from the underlying density.

We start from the presentation of such diffusion equations in Robert and Casella (1999). The
Langevin diffusion Xt is defined by the stochastic differential equation

dXt =
1
2
∇ log f(Xt) + dBt (10)

for Bt the standard Brownian motion. It has f as stationary distribution, which is in good part what
we are interested in. The discretized form of this equation is

x(t+1) = x(t) +
σ2

2
∇ log f(x(t)) + σεt (11)

where εt ∼ N (0, I) and σ2 corresponds to the discretization size.

Without going into all the conditions required for this to work, we can see that this looks very similar
to our situation if we truncate our expansion for mδ(x), leaving only

m̂δ(x) = x+
δ2

d+ 2
∂ log p(x)

∂x
, (12)

If we assume that the local covariance is nearly a constant times the identity (which we are confident
of being able to show), then the sampling algorithm from Bengio et al. (2012a) corresponds to
discrete steps of the form

x(t+1) = x(t) +
δ2

d+ 2
∇ log p(x(t)) +

√
2
δ2

d+ 2
εt.

By taking σ2 = 2 δ2

d+2 we can see that we have a discretization just like (11) coming from (10). The
stationary distribution in our case is p.

This shows a way in which we can implicitly estimate p from a trained regularized autoencoder,
by drawing samples according to a Langevin MCMC using the estimated score. This is interesting
because in the case where r(x) − x is not constrained to be the derivative of some energy function
and the data dimension d > 1, it is not clear how to recover an estimator of the underlying data
generating distribution. This shows that an implicit estimation is possible through a data generating
procedure.

5 Conclusion

We have shown that regularized auto-encoders such as the Denoising Auto-Encoder and a form
of Contractive Auto-Encoder estimate local properties of the data generating density such as the
score and local mean. This suggests that minimizing a regularized reconstruction error may be an
alternative to maximum likelihood for unsupervised learning.
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There are still many open questions that remain to be studied. Can the results presented here be
generalized to other forms of regularization? What happens when r is parametric and λ is not tiny?
What is the connection between the reconstruction function (and in particular its derivative) and the
second derivative of the density or the second local moment (local covariance)? Geometric intuition
suggests immediate answers to these questions. If the density is smooth, then we conjecture that the
leading term of local covariance is simply proportional to the identity matrix. On the other hand,
if the density concentrates near a low-dimensional manifold, then we conjecture that the leading
eigenvectors of the local covariance coincide with the leading eigenvectors of the Jacobian of the
reconstruction function and with the minor eigenvectors of the density Hessian.

As we further our understanding auto-encoders as estimating local properties of the data generat-
ing density, this suggests sampling algorithms as discussed in Bengio et al. (2012a); Rifai et al.
(2012). However, several mathematical questions remain open in this respect. Whereas the stan-
dard Langevin MCMC only uses the first derivative of the density, we would like to formalize and
establish corresponding Markov chains that also exploit the second order information. Indeed, our
preliminary experiments on image data suggest that only using the score (local mean) and not the
estimated local covariance yields substantially worse samples, compared to using the leading eigen-
vectors of the Jacobian of the reconstruction as well (to allow movement on the manifold and not
just towards it).
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6 Appendix

6.1 Calculus of Variations

Theorem 2. Let p be a probability density function that is continuously differentiable once and with
support Rd (i.e. ∀x ∈ Rd we have p(x) 6= 0). Let L be the loss function defined by

L(r) =
ˆ

Rd
p(x)

[
‖r(x)− x‖22 + λ

∥∥∥∥∂r(x)
∂x

∥∥∥∥2

F

]
dx

for r : Rd → Rd assumed to be continuously differentiable once, and 0 < λ ∈ R used as factor to
the penalty term.

Then the optimal function r(x) that minimizes L is such that

r(x) = x+ λ
∂ log p(x)

∂x
+ o(λ) as λ→ 0.

Proof. To demonstrate this, we make use of the Euler-Lagrange equation from the Calculus of Vari-
ations. We would refer the reader to either (Dacorogna, 2004) or Wikipedia for more on the topic.
Let

f(x1, . . . , xn, r, rx1 , . . . , rxn) = p(x)

[
‖r(x)− x‖22 + λ

∥∥∥∥∂r(x)
∂x

∥∥∥∥2

F

]
where x = (x1, . . . , xd) , r(x) = (r1(x), . . . , rd(x)) and rxi = ∂f

∂xi
.

We can rewrite the loss L(r) more explicitly as

L(r) =
ˆ

Rd
p(x)

 d∑
i=1

(ri(x)− xi)2
2 + λ

d∑
i=1

d∑
j=1

∂ri(x)
∂xj

2
 dx

=
d∑
i=1

ˆ
Rd
p(x)

(ri(x)− xi)2
2 + λ

d∑
j=1

∂ri(x)
∂xj

2
 dx (13)

to observe that the components r1(x), . . . , rd(x) can each be optimized separately.

11



The Euler-Lagrange equation to be satisfied at the optimal r : Rd → Rd is

∂f

∂r
=

d∑
i=1

∂

∂xi

∂f

∂rxi
.

In our situation, the expressions from that equation are given by

∂f

∂r
= 2(r(x)− x)p(x)

∂f

∂rxi
= 2λp(x)

[
∂r1
∂xi

∂r2
∂xi

· · · ∂rd
∂xi

]T
∂

∂xi

(
∂f

∂rxi

)
= 2λ

∂p(x)
∂xi

[
∂r1
∂xi

∂r2
∂xi

· · · ∂rd
∂xi

]T
+2λp(x)

[
∂2r1
∂x2
i

∂2r2
∂x2
i
· · · ∂2rd

∂x2
i

]T
and the equality to be satisfied at the optimum becomes

(r(x)− x)p(x) = λ

d∑
i=1


∂p(x)
∂xi

∂r1
∂xi

+ p(x)∂
2r1
∂x2
i

...
∂p(x)
∂xi

∂rd
∂xi

+ p(x)∂
2rd
∂x2
i

 . (14)

As equation (13) hinted, the expression (14) can be decomposed into the different components
rk(x) : Rd → R that make r. For k = 1, . . . , d we get

(rk(x)− xk)p(x) = λ

d∑
i=1

(
∂p(x)
∂xi

∂rk(x)
∂xi

+ p(x)
∂2rk(x)
∂x2

i

)
.

As p(x) 6= 0 by hypothesis, we can divide all the terms by p(x) and note that ∂p(x)
∂xi

/p(x) =
∂ log p(x)
∂xi

.

We get

rk(x)− xk = λ

d∑
i=1

(
∂ log p(x)
∂xi

∂rk(x)
∂xi

+
∂2rk(x)
∂x2

i

)
. (15)

This first thing to observe is that when λ = 0 the solution is just rk(x) = xk, which translates into
r(x) = x. This is not a surprise because it represents the perfect reconstruction value that we get
when we the penalty term vanishes in the loss function.

The question is now that happens as λ > 0 gets close to 0. If we could solve (15) analytically, we
would simply take the solution, compute its derivative with respect to λ, evaluate it at λ = 0, and
that would be our answer. In a way, we are saying that

r(x) = x+ λh(x) + g(λ, x) (16)

for some function h(x) : Rd → Rd that we want to identify, along with some remainder term g(λ, x)
that involves higher powers of λ. That is, g(λ, x) is such that

12



lim
λ→0

1
λ
g(λ, x) = 0, lim

λ→0

1
λ

∂g(λ, x)
∂x

= 0, lim
λ→0

1
λ

∂2g(λ, x)
∂x2

= 0.

With that r(x) = x+ λh(x) + g(λ, x), we will focus on the k-th component

rk(x) = xk + λhk(x) + gk(λ, x).

The first and second derivatives with respect to xi are

∂rk(x)
∂xi

= I (k = i) + λ
∂hk(x)
∂xi

+
∂gk(λ, x)
∂xi

∂2rk(x)
∂x2

i

= 0 + λ
∂2hk(x)
∂x2

i

+
∂2gk(λ, x)

∂x2
i

.

Working on both sides of equation (15), we get

λhk(x) + gk(x, λ) = λ

d∑
i=1

(
∂ log p(x)
∂xi

(
I (k = i) + λ

∂hk(x)
∂xi

+
∂gk(λ, x)
∂xi

)
+ λ

∂2hk(x)
∂x2

i

+
∂2gk(λ, x)

∂x2
i

)

= λ
∂ log p(x)
∂xk

+ λ

d∑
i=1

(
∂ log p(x)
∂xi

(
λ
∂hk(x)
∂xi

+
∂gk(λ, x)
∂xi

)
+ λ

∂2hk(x)
∂x2

i

+
∂2gk(λ, x)

∂x2
i

)
.

Dividing both sides by λ and taking the limit λ → 0 we eliminate almost all the terms and are left
with

hk(x) =
∂ log p(x)
∂xk

.

This means that (16) can be rewritten as

r(x) = x+ λ
∂ log p(x)

∂x
+ o(λ) as λ→ 0,

which completes the proof.

6.2 Asymptotic formulas for localised moments

Proposition 1. Let p be of class C2 and let x0 ∈ Rd. Then we have that

Zδ(x0) = δd
πd/2

Γ (1 + d/2)

[
p(x0) + δ2 Tr(H(x0))

2(d+ 2)
+ o(δ3)

]

where H(x0) = ∂2p(x)
∂x2

∣∣∣
x=x0

. Moreover, we have that

1
Zδ(x0)

= δ−d
Γ (1 + d/2)

πd/2

[
1

p(x0)
− δ2 1

p(x0)2

Tr(H(x0))
2(d+ 2)

+ o(δ3)
]
.

13



Proof.

Zδ(x0) =
ˆ
Bδ(x0)

[
p(x0) +

∂p(x)
∂x

∣∣∣∣
x0

(x− x0) +
1
2!

(x− x0)TH(x0)(x− x0)

+
1
3!
D(3)p(x0)(x− x0) + o(δ3)

]
dx

= p(x0)
ˆ
Bδ(x0)

dx + 0 +
1
2

ˆ
Bδ(x0)

(x− x0)TH(x0)(x− x0)dx + 0 + o(δd+3)

= p(x0)δd
πd/2

Γ (1 + d/2)
+ δd+2 πd/2

4Γ (2 + d/2)
Tr (H(x0)) + o(δd+3)

= δd
πd/2

Γ (1 + d/2)

[
p(x0) + δ2 Tr(H(x0))

2(d+ 2)
+ o(δ3)

]
We use Proposition 3 to get that trace come up from the integral involving H(x0). The expression
for 1/Zδ(x0) comes from the fact that, for any a, b > 0 we have that

1
a+ bδ2 + o(δ3)

=
a−1

1 + b
aδ

2 + o(δ3)
=

1
a

(
1− (

b

a
δ2 + o(δ3)) + o(δ4)

)
=

1
a
− b

a2
δ2 + o(δ3) as δ → 0.

by using the classic result from geometric series where 1
1+r = 1− r + r2 − . . . for |r| < 1.

Now we just apply this to

1
Zδ(x0)

= δ−d
Γ (1 + d/2)

πd/2
1[

p(x0) + δ2 Tr(H(x0))
2(d+2) + o(δ3)

]
and get the expected result.

Theorem 3. Let p be of class C3 and represent a probability density function. Let x0 ∈ Rd with
p(x0) 6= 0. Then we have that

mδ(x0) = x0 + δ2 1
d+ 2

∂ log p(x)
∂x

∣∣∣∣
x0

+ o
(
δ3
)
.

Proof. The leading term in the expression for mδ(x0) is obtained by transforming the x in the
integral into a x− x0 to make the integral easier to integrate.

mδ(x0) =
1

Zδ(x0)

ˆ
Bδ(x0)

xp(x)dx = x0 +
1

zδ(x0)

ˆ
Bδ(x0)

(x− x0)p(x)dx.

Now using the Taylor expansion around x0

mδ(x0) = x0 +
1

Zδ(x0)

ˆ
Bδ(x0)

(x− x0)

[
p(x0) +

∂p(x)
∂x

∣∣∣∣
x0

(x− x0)

+
1
2

(x− x0)T
∂2p(x)
∂x2

∣∣∣∣
x0

(x− x0) + o(‖x− x0‖2)

]
dx.
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Remember that
´
Bδ(x0)

f(x)dx = 0 whenever we have a function f is anti-symmetrical (or “odd”)
relative to the point x0 (i.e. f(x− x0) = f(−x− x0)). This applies to the terms (x− x0)p(x0) and
(x− x0)(x− x0) ∂2p(x)

∂x2

∣∣∣
x=x0

(x− x0)T . Hence we use Proposition 2 to get

mδ(x0) = x0 +
1

Zδ(x0)

ˆ
Bδ(x0)

[
(x− x0)T

∂p(x)
∂x

∣∣∣∣
x0

(x− x0) + o(‖x− x0‖3)

]
dx

= x0 +
1

Zδ(x0)

(
δd+2 π

d
2

2Γ
(
2 + d

2

)) ∂p(x)
∂x

∣∣∣∣
x0

+ o(δ3).

Now, looking at the coefficient in front of ∂p(x)
∂x

∣∣∣
x0

in the first term, we can use Proposition 1 to

rewrite it as

1
Zδ(x0)

(
δd+2 π

d
2

2Γ
(
2 + d

2

)) = δ−d
Γ (1 + d/2)

πd/2

[
1

p(x0)
− δ2 1

p(x0)2

Tr(H(x0))
2(d+ 2)

+ o(δ3)
]
δd+2 π

d
2

2Γ
(
2 + d

2

)
= δ2 Γ

(
1 + d

2

)
2Γ
(
2 + d

2

) [ 1
p(x0)

− δ2 1
p(x0)2

Tr(H(x0))
2(d+ 2)

+ o(δ3)
]

= δ2 1
p(x0)

1
d+ 2

+ o(δ3).

There is no reason the keep the −δ4 Γ(1+ d
2 )

2Γ(2+ d
2 )

1
p(x0)2

Tr(H(x0))
2(d+2) in the above expression because the

asymptotic error from the remainder term in the main expression is o(δ3). That would swallow our
exact expression for δ4 and make it useless.

We end up with

mδ(x0) = x0 + δ2 1
d+ 2

∂ log p(x)
∂x

∣∣∣∣
x0

+ o(δ3).

6.3 Integration on balls and spheres

This result comes from Multi-dimensional Integration : Scary Calculus Problems from Tim Reluga
(who got the results from How to integrate a polynomial over a sphere by Gerald B. Folland).

Theorem 4. Let B =
{
x ∈ Rd

∣∣∣∑d
j=1 x

2
j ≤ 1

}
be the ball of radius 1 around the origin. Then

ˆ
B

d∏
j=1

|xj |aj dx =

∏
Γ
(
aj+1

2

)
Γ
(
1 + d

2 + 1
2

∑
aj
)

for any real numbers aj ≥ 0.

Corollary 1. Let B be the ball of radius 1 around the origin. Then

ˆ
B

d∏
j=1

x
aj
j dx =


Q

Γ
“
aj+1

2

”
Γ(1+ d

2 + 1
2

P
aj) if all the ajare even integers

0 otherwise

for any non-negative integers aj ≥ 0. Note the absence of the absolute values put on the xajj terms.
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Corollary 2. Let Bδ(0) ⊂ Rd be the ball of radius δ around the origin. Then

ˆ
Bδ(0)

d∏
j=1

x
aj
j dx =

δd+
P
aj

Q
Γ
“
aj+1

2

”
Γ(1+ d

2 + 1
2

P
aj) if all the ajare even integers

0 otherwise

for any non-negative integers aj ≥ 0. Note the absence of the absolute values on the xajj terms.

Proof. We take the theorem as given and concentrate here on justifying the two corollaries.

Note how in Corollary 1 we dropped the absolute values that were in the original Theorem 4. In
situations where at least one aj is odd, we have that the function f(x) =

∏d
j=1 x

aj
j becomes odd

in the sense that f(−x) = −f(x). Because of the symmetrical nature of the integration on the unit
ball, we get that the integral is 0 as a result of cancellations.

For Corollary 2, we can rewrite the integral by changing the domain with yj = xj/δ so that

δ−
P
aj

ˆ
Bδ(0)

d∏
j=1

x
aj
j dx =

ˆ
Bδ(0)

d∏
j=1

(xj/δ)
aj dx =

ˆ
B1(0)

d∏
j=1

yajδddy.

We pull out the δd that we got from the determinant of the Jacobian when changing from dx to dy
and Corollary 2 follows.

Proposition 2. Let v ∈ Rd and let Bδ(0) ⊂ Rd be the ball of radius δ around the origin. Then

ˆ
Bδ(0)

y < v, y > dy =

(
δd+2 π

d
2

2Γ
(
2 + d

2

)) v

where < v, y > is the usual dot product.

Proof. We have that

y < v, y > =

 v1y
2
1

...
vdy

2
d


which is decomposable into d component-wise applications of Corollary 2. This yields the expected
result with the constant obtained from Γ

(
3
2

)
= 1

2Γ
(

1
2

)
= 1

2

√
π.

Proposition 3. Let H ∈ Rd×d and let Bδ(x0) ⊂ Rd be the ball of radius δ around x0 ∈ Rd. Then

ˆ
Bδ(x0)

(x− x0)TH(x− x0)dx = δd+2 πd/2

2Γ (2 + d/2)
trace (H) .

Proof. First, by substituting y = (x− x0) /δ we have that this is equivalent to showing that

ˆ
B1(0)

yTHydy =
πd/2

2Γ (2 + d/2)
trace (H) .

This integral yields a real number which can be written as
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ˆ
B1(0)

yTHydy =
ˆ
B1(0)

∑
i,j

yiHi,jyjdy =
∑
i,j

ˆ
B1(0)

yiyjHi,jdy.

Now we know from Corollary 2 that this integral is zero when i 6= j. This gives

∑
i,j

Hi,j

ˆ
B1(0)

yiyjdy =
∑
i

Hi,i

ˆ
B1(0)

y2
i dy = trace (H)

πd/2

2Γ (2 + d/2)
.
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