LC Filter Design Using Equal Value R Gyrator

The following Equations calculate the C values for a defined R, Q, and FO. This to be used for the form of gyrator that uses equal value R's and a single opamp/follower.

Where...

FO = resonate frequency in Hertz

R = value of the two resistors in Ohms

Q = FO/Bandwidth

$$Q := 1$$

R := 1000

CS is the C value for the LC filter

$$\mathrm{CS} \coloneqq \frac{1}{\left(4 \cdot \pi\right) \cdot R \cdot Q \cdot FO} \qquad \mathrm{CS} = 2.947 \times 10^{-7} \qquad \text{or 0.294 mfd}$$

$$CS = 2.947 \times 10^{-3}$$

Cl is the C value for the Gyrator that simulates the L in the LC filter

$$CI := \frac{Q}{\pi \cdot R \cdot FO}$$
 $CI = 1.179 \times 10^{-6}$ or 1.179 mfd

$$CI = 1.179 \times 10^{-6}$$

So to build a LC filter with Q = 1, center freq = 270 Hz, and using 1k resistors, use a 0.294 mfd in series with the gryator which uses a 1.179 mfd cap.

To prove the above...

$$FO := \frac{1}{\left(2 \cdot \pi\right) \cdot R \cdot \sqrt{CS \cdot CI}}$$

$$FO = 270$$

