*> \brief \b CDOTC
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)
*
* .. Scalar Arguments ..
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*),CY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CDOTC forms the dot product of two complex vectors
*> CDOTC = X^H * Y
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*>
*> \param[in] CY
*> \verbatim
*> CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> storage spacing between elements of CY
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup dot
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
COMPLEX CX(*),CY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
COMPLEX CTEMP
INTEGER I,IX,IY
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
CTEMP = (0.0,0.0)
CDOTC = (0.0,0.0)
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
DO I = 1,N
CTEMP = CTEMP + CONJG(CX(I))*CY(I)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
CTEMP = CTEMP + CONJG(CX(IX))*CY(IY)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
CDOTC = CTEMP
RETURN
*
* End of CDOTC
*
END
*> \brief \b CHPR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
*
* .. Scalar Arguments ..
* REAL ALPHA
* INTEGER INCX,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX AP(*),X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHPR performs the hermitian rank 1 operation
*>
*> A := alpha*x*x**H + A,
*>
*> where alpha is a real scalar, x is an n element vector and A is an
*> n by n hermitian matrix, supplied in packed form.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is REAL
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX array, dimension at least
*> ( ( n*( n + 1 ) )/2 ).
*> Before entry with UPLO = 'U' or 'u', the array AP must
*> contain the upper triangular part of the hermitian matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*> and a( 2, 2 ) respectively, and so on. On exit, the array
*> AP is overwritten by the upper triangular part of the
*> updated matrix.
*> Before entry with UPLO = 'L' or 'l', the array AP must
*> contain the lower triangular part of the hermitian matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*> and a( 3, 1 ) respectively, and so on. On exit, the array
*> AP is overwritten by the lower triangular part of the
*> updated matrix.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero, and on exit they
*> are set to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hpr
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL ALPHA
INTEGER INCX,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX AP(*),X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JX,K,KK,KX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHPR ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
*
* Set the start point in X if the increment is not unity.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form A when upper triangle is stored in AP.
*
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
K = KK
DO 10 I = 1,J - 1
AP(K) = AP(K) + X(I)*TEMP
K = K + 1
10 CONTINUE
AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP)
ELSE
AP(KK+J-1) = REAL(AP(KK+J-1))
END IF
KK = KK + J
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
IX = KX
DO 30 K = KK,KK + J - 2
AP(K) = AP(K) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP)
ELSE
AP(KK+J-1) = REAL(AP(KK+J-1))
END IF
JX = JX + INCX
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J))
K = KK + 1
DO 50 I = J + 1,N
AP(K) = AP(K) + X(I)*TEMP
K = K + 1
50 CONTINUE
ELSE
AP(KK) = REAL(AP(KK))
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX))
IX = JX
DO 70 K = KK + 1,KK + N - J
IX = IX + INCX
AP(K) = AP(K) + X(IX)*TEMP
70 CONTINUE
ELSE
AP(KK) = REAL(AP(KK))
END IF
JX = JX + INCX
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHPR
*
END
*> \brief \b CPPTRI
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPPTRI + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CPPTRI( UPLO, N, AP, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* COMPLEX AP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPPTRI computes the inverse of a complex Hermitian positive definite
*> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
*> computed by CPPTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangular factor is stored in AP;
*> = 'L': Lower triangular factor is stored in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX array, dimension (N*(N+1)/2)
*> On entry, the triangular factor U or L from the Cholesky
*> factorization A = U**H*U or A = L*L**H, packed columnwise as
*> a linear array. The j-th column of U or L is stored in the
*> array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
*>
*> On exit, the upper or lower triangle of the (Hermitian)
*> inverse of A, overwriting the input factor U or L.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the (i,i) element of the factor U or L is
*> zero, and the inverse could not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup pptri
*
* =====================================================================
SUBROUTINE CPPTRI( UPLO, N, AP, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
COMPLEX AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, JC, JJ, JJN
REAL AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
COMPLEX CDOTC
EXTERNAL LSAME, CDOTC
* ..
* .. External Subroutines ..
EXTERNAL CHPR, CSSCAL, CTPMV, CTPTRI, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPPTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Invert the triangular Cholesky factor U or L.
*
CALL CTPTRI( UPLO, 'Non-unit', N, AP, INFO )
IF( INFO.GT.0 )
$ RETURN
IF( UPPER ) THEN
*
* Compute the product inv(U) * inv(U)**H.
*
JJ = 0
DO 10 J = 1, N
JC = JJ + 1
JJ = JJ + J
IF( J.GT.1 )
$ CALL CHPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
AJJ = REAL( AP( JJ ) )
CALL CSSCAL( J, AJJ, AP( JC ), 1 )
10 CONTINUE
*
ELSE
*
* Compute the product inv(L)**H * inv(L).
*
JJ = 1
DO 20 J = 1, N
JJN = JJ + N - J + 1
AP( JJ ) = REAL( CDOTC( N-J+1, AP( JJ ), 1, AP( JJ ),
$ 1 ) )
IF( J.LT.N )
$ CALL CTPMV( 'Lower', 'Conjugate transpose',
$ 'Non-unit',
$ N-J, AP( JJN ), AP( JJ+1 ), 1 )
JJ = JJN
20 CONTINUE
END IF
*
RETURN
*
* End of CPPTRI
*
END
*> \brief \b CSCAL
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CSCAL(N,CA,CX,INCX)
*
* .. Scalar Arguments ..
* COMPLEX CA
* INTEGER INCX,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CSCAL scales a vector by a constant.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] CA
*> \verbatim
*> CA is COMPLEX
*> On entry, CA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in,out] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup scal
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 3/93 to return if incx .le. 0.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CSCAL(N,CA,CX,INCX)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX CA
INTEGER INCX,N
* ..
* .. Array Arguments ..
COMPLEX CX(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,NINCX
* ..
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
* ..
IF (N.LE.0 .OR. INCX.LE.0 .OR. CA.EQ.ONE) RETURN
IF (INCX.EQ.1) THEN
*
* code for increment equal to 1
*
DO I = 1,N
CX(I) = CA*CX(I)
END DO
ELSE
*
* code for increment not equal to 1
*
NINCX = N*INCX
DO I = 1,NINCX,INCX
CX(I) = CA*CX(I)
END DO
END IF
RETURN
*
* End of CSCAL
*
END
*> \brief \b CSSCAL
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CSSCAL(N,SA,CX,INCX)
*
* .. Scalar Arguments ..
* REAL SA
* INTEGER INCX,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CSSCAL scales a complex vector by a real constant.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] SA
*> \verbatim
*> SA is REAL
*> On entry, SA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in,out] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup scal
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 3/93 to return if incx .le. 0.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CSSCAL(N,SA,CX,INCX)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL SA
INTEGER INCX,N
* ..
* .. Array Arguments ..
COMPLEX CX(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,NINCX
* ..
* .. Parameters ..
REAL ONE
PARAMETER (ONE=1.0E+0)
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG,CMPLX,REAL
* ..
IF (N.LE.0 .OR. INCX.LE.0 .OR. SA.EQ.ONE) RETURN
IF (INCX.EQ.1) THEN
*
* code for increment equal to 1
*
DO I = 1,N
CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I)))
END DO
ELSE
*
* code for increment not equal to 1
*
NINCX = N*INCX
DO I = 1,NINCX,INCX
CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I)))
END DO
END IF
RETURN
*
* End of CSSCAL
*
END
*> \brief \b CTPMV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
*
* .. Scalar Arguments ..
* INTEGER INCX,N
* CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
* COMPLEX AP(*),X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CTPMV performs one of the matrix-vector operations
*>
*> x := A*x, or x := A**T*x, or x := A**H*x,
*>
*> where x is an n element vector and A is an n by n unit, or non-unit,
*> upper or lower triangular matrix, supplied in packed form.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the matrix is an upper or
*> lower triangular matrix as follows:
*>
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
*>
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
*>
*> TRANS = 'N' or 'n' x := A*x.
*>
*> TRANS = 'T' or 't' x := A**T*x.
*>
*> TRANS = 'C' or 'c' x := A**H*x.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> On entry, DIAG specifies whether or not A is unit
*> triangular as follows:
*>
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
*>
*> DIAG = 'N' or 'n' A is not assumed to be unit
*> triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is COMPLEX array, dimension at least
*> ( ( n*( n + 1 ) )/2 ).
*> Before entry with UPLO = 'U' or 'u', the array AP must
*> contain the upper triangular matrix packed sequentially,
*> column by column, so that AP( 1 ) contains a( 1, 1 ),
*> AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
*> respectively, and so on.
*> Before entry with UPLO = 'L' or 'l', the array AP must
*> contain the lower triangular matrix packed sequentially,
*> column by column, so that AP( 1 ) contains a( 1, 1 ),
*> AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
*> respectively, and so on.
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
*> A are not referenced, but are assumed to be unity.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x. On exit, X is overwritten with the
*> transformed vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup tpmv
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX,N
CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
COMPLEX AP(*),X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JX,K,KK,KX
LOGICAL NOCONJ,NOUNIT
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND.
+ .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND.
+ .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (INCX.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CTPMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF (N.EQ.0) RETURN
*
NOCONJ = LSAME(TRANS,'T')
NOUNIT = LSAME(DIAG,'N')
*
* Set up the start point in X if the increment is not unity. This
* will be ( N - 1 )*INCX too small for descending loops.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of AP are
* accessed sequentially with one pass through AP.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form x:= A*x.
*
IF (LSAME(UPLO,'U')) THEN
KK = 1
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = X(J)
K = KK
DO 10 I = 1,J - 1
X(I) = X(I) + TEMP*AP(K)
K = K + 1
10 CONTINUE
IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
END IF
KK = KK + J
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = X(JX)
IX = KX
DO 30 K = KK,KK + J - 2
X(IX) = X(IX) + TEMP*AP(K)
IX = IX + INCX
30 CONTINUE
IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
END IF
JX = JX + INCX
KK = KK + J
40 CONTINUE
END IF
ELSE
KK = (N* (N+1))/2
IF (INCX.EQ.1) THEN
DO 60 J = N,1,-1
IF (X(J).NE.ZERO) THEN
TEMP = X(J)
K = KK
DO 50 I = N,J + 1,-1
X(I) = X(I) + TEMP*AP(K)
K = K - 1
50 CONTINUE
IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
END IF
KK = KK - (N-J+1)
60 CONTINUE
ELSE
KX = KX + (N-1)*INCX
JX = KX
DO 80 J = N,1,-1
IF (X(JX).NE.ZERO) THEN
TEMP = X(JX)
IX = KX
DO 70 K = KK,KK - (N- (J+1)),-1
X(IX) = X(IX) + TEMP*AP(K)
IX = IX - INCX
70 CONTINUE
IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
END IF
JX = JX - INCX
KK = KK - (N-J+1)
80 CONTINUE
END IF
END IF
ELSE
*
* Form x := A**T*x or x := A**H*x.
*
IF (LSAME(UPLO,'U')) THEN
KK = (N* (N+1))/2
IF (INCX.EQ.1) THEN
DO 110 J = N,1,-1
TEMP = X(J)
K = KK - 1
IF (NOCONJ) THEN
IF (NOUNIT) TEMP = TEMP*AP(KK)
DO 90 I = J - 1,1,-1
TEMP = TEMP + AP(K)*X(I)
K = K - 1
90 CONTINUE
ELSE
IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
DO 100 I = J - 1,1,-1
TEMP = TEMP + CONJG(AP(K))*X(I)
K = K - 1
100 CONTINUE
END IF
X(J) = TEMP
KK = KK - J
110 CONTINUE
ELSE
JX = KX + (N-1)*INCX
DO 140 J = N,1,-1
TEMP = X(JX)
IX = JX
IF (NOCONJ) THEN
IF (NOUNIT) TEMP = TEMP*AP(KK)
DO 120 K = KK - 1,KK - J + 1,-1
IX = IX - INCX
TEMP = TEMP + AP(K)*X(IX)
120 CONTINUE
ELSE
IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
DO 130 K = KK - 1,KK - J + 1,-1
IX = IX - INCX
TEMP = TEMP + CONJG(AP(K))*X(IX)
130 CONTINUE
END IF
X(JX) = TEMP
JX = JX - INCX
KK = KK - J
140 CONTINUE
END IF
ELSE
KK = 1
IF (INCX.EQ.1) THEN
DO 170 J = 1,N
TEMP = X(J)
K = KK + 1
IF (NOCONJ) THEN
IF (NOUNIT) TEMP = TEMP*AP(KK)
DO 150 I = J + 1,N
TEMP = TEMP + AP(K)*X(I)
K = K + 1
150 CONTINUE
ELSE
IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
DO 160 I = J + 1,N
TEMP = TEMP + CONJG(AP(K))*X(I)
K = K + 1
160 CONTINUE
END IF
X(J) = TEMP
KK = KK + (N-J+1)
170 CONTINUE
ELSE
JX = KX
DO 200 J = 1,N
TEMP = X(JX)
IX = JX
IF (NOCONJ) THEN
IF (NOUNIT) TEMP = TEMP*AP(KK)
DO 180 K = KK + 1,KK + N - J
IX = IX + INCX
TEMP = TEMP + AP(K)*X(IX)
180 CONTINUE
ELSE
IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
DO 190 K = KK + 1,KK + N - J
IX = IX + INCX
TEMP = TEMP + CONJG(AP(K))*X(IX)
190 CONTINUE
END IF
X(JX) = TEMP
JX = JX + INCX
KK = KK + (N-J+1)
200 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of CTPMV
*
END
*> \brief \b CTPTRI
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CTPTRI + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CTPTRI( UPLO, DIAG, N, AP, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, UPLO
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* COMPLEX AP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CTPTRI computes the inverse of a complex upper or lower triangular
*> matrix A stored in packed format.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> = 'N': A is non-unit triangular;
*> = 'U': A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX array, dimension (N*(N+1)/2)
*> On entry, the upper or lower triangular matrix A, stored
*> columnwise in a linear array. The j-th column of A is stored
*> in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
*> On exit, the (triangular) inverse of the original matrix, in
*> the same packed storage format.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
*> matrix is singular and its inverse can not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup tptri
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> A triangular matrix A can be transferred to packed storage using one
*> of the following program segments:
*>
*> UPLO = 'U': UPLO = 'L':
*>
*> JC = 1 JC = 1
*> DO 2 J = 1, N DO 2 J = 1, N
*> DO 1 I = 1, J DO 1 I = J, N
*> AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
*> 1 CONTINUE 1 CONTINUE
*> JC = JC + J JC = JC + N - J + 1
*> 2 CONTINUE 2 CONTINUE
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CTPTRI( UPLO, DIAG, N, AP, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER DIAG, UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
COMPLEX AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE, ZERO
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT, UPPER
INTEGER J, JC, JCLAST, JJ
COMPLEX AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CSCAL, CTPMV, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOUNIT = LSAME( DIAG, 'N' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CTPTRI', -INFO )
RETURN
END IF
*
* Check for singularity if non-unit.
*
IF( NOUNIT ) THEN
IF( UPPER ) THEN
JJ = 0
DO 10 INFO = 1, N
JJ = JJ + INFO
IF( AP( JJ ).EQ.ZERO )
$ RETURN
10 CONTINUE
ELSE
JJ = 1
DO 20 INFO = 1, N
IF( AP( JJ ).EQ.ZERO )
$ RETURN
JJ = JJ + N - INFO + 1
20 CONTINUE
END IF
INFO = 0
END IF
*
IF( UPPER ) THEN
*
* Compute inverse of upper triangular matrix.
*
JC = 1
DO 30 J = 1, N
IF( NOUNIT ) THEN
AP( JC+J-1 ) = ONE / AP( JC+J-1 )
AJJ = -AP( JC+J-1 )
ELSE
AJJ = -ONE
END IF
*
* Compute elements 1:j-1 of j-th column.
*
CALL CTPMV( 'Upper', 'No transpose', DIAG, J-1, AP,
$ AP( JC ), 1 )
CALL CSCAL( J-1, AJJ, AP( JC ), 1 )
JC = JC + J
30 CONTINUE
*
ELSE
*
* Compute inverse of lower triangular matrix.
*
JC = N*( N+1 ) / 2
DO 40 J = N, 1, -1
IF( NOUNIT ) THEN
AP( JC ) = ONE / AP( JC )
AJJ = -AP( JC )
ELSE
AJJ = -ONE
END IF
IF( J.LT.N ) THEN
*
* Compute elements j+1:n of j-th column.
*
CALL CTPMV( 'Lower', 'No transpose', DIAG, N-J,
$ AP( JCLAST ), AP( JC+1 ), 1 )
CALL CSCAL( N-J, AJJ, AP( JC+1 ), 1 )
END IF
JCLAST = JC
JC = JC - N + J - 2
40 CONTINUE
END IF
*
RETURN
*
* End of CTPTRI
*
END
*> \brief \b LSAME
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* LOGICAL FUNCTION LSAME(CA,CB)
*
* .. Scalar Arguments ..
* CHARACTER CA,CB
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> LSAME returns .TRUE. if CA is the same letter as CB regardless of
*> case.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] CA
*> \verbatim
*> CA is CHARACTER*1
*> \endverbatim
*>
*> \param[in] CB
*> \verbatim
*> CB is CHARACTER*1
*> CA and CB specify the single characters to be compared.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup lsame
*
* =====================================================================
LOGICAL FUNCTION LSAME(CA,CB)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER CA,CB
* ..
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC ICHAR
* ..
* .. Local Scalars ..
INTEGER INTA,INTB,ZCODE
* ..
*
* Test if the characters are equal
*
LSAME = CA .EQ. CB
IF (LSAME) RETURN
*
* Now test for equivalence if both characters are alphabetic.
*
ZCODE = ICHAR('Z')
*
* Use 'Z' rather than 'A' so that ASCII can be detected on Prime
* machines, on which ICHAR returns a value with bit 8 set.
* ICHAR('A') on Prime machines returns 193 which is the same as
* ICHAR('A') on an EBCDIC machine.
*
INTA = ICHAR(CA)
INTB = ICHAR(CB)
*
IF (ZCODE.EQ.90 .OR. ZCODE.EQ.122) THEN
*
* ASCII is assumed - ZCODE is the ASCII code of either lower or
* upper case 'Z'.
*
IF (INTA.GE.97 .AND. INTA.LE.122) INTA = INTA - 32
IF (INTB.GE.97 .AND. INTB.LE.122) INTB = INTB - 32
*
ELSE IF (ZCODE.EQ.233 .OR. ZCODE.EQ.169) THEN
*
* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
* upper case 'Z'.
*
IF (INTA.GE.129 .AND. INTA.LE.137 .OR.
+ INTA.GE.145 .AND. INTA.LE.153 .OR.
+ INTA.GE.162 .AND. INTA.LE.169) INTA = INTA + 64
IF (INTB.GE.129 .AND. INTB.LE.137 .OR.
+ INTB.GE.145 .AND. INTB.LE.153 .OR.
+ INTB.GE.162 .AND. INTB.LE.169) INTB = INTB + 64
*
ELSE IF (ZCODE.EQ.218 .OR. ZCODE.EQ.250) THEN
*
* ASCII is assumed, on Prime machines - ZCODE is the ASCII code
* plus 128 of either lower or upper case 'Z'.
*
IF (INTA.GE.225 .AND. INTA.LE.250) INTA = INTA - 32
IF (INTB.GE.225 .AND. INTB.LE.250) INTB = INTB - 32
END IF
LSAME = INTA .EQ. INTB
*
* RETURN
*
* End of LSAME
*
END
*> \brief \b XERBLA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE XERBLA( SRNAME, INFO )
*
* .. Scalar Arguments ..
* CHARACTER*(*) SRNAME
* INTEGER INFO
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> XERBLA is an error handler for the LAPACK routines.
*> It is called by an LAPACK routine if an input parameter has an
*> invalid value. A message is printed and execution stops.
*>
*> Installers may consider modifying the STOP statement in order to
*> call system-specific exception-handling facilities.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SRNAME
*> \verbatim
*> SRNAME is CHARACTER*(*)
*> The name of the routine which called XERBLA.
*> \endverbatim
*>
*> \param[in] INFO
*> \verbatim
*> INFO is INTEGER
*> The position of the invalid parameter in the parameter list
*> of the calling routine.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup xerbla
*
* =====================================================================
SUBROUTINE XERBLA( SRNAME, INFO )
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*(*) SRNAME
INTEGER INFO
* ..
*
* =====================================================================
*
* .. Intrinsic Functions ..
INTRINSIC LEN_TRIM
* ..
* .. Executable Statements ..
*
WRITE( *, FMT = 9999 )SRNAME( 1:LEN_TRIM( SRNAME ) ), INFO
*
STOP
*
9999 FORMAT( ' ** On entry to ', A, ' parameter number ', I2, ' had ',
$ 'an illegal value' )
*
* End of XERBLA
*
END