2014/01/11 @ DSIRNLP 5

Cache-Oblivious
データ構造入門
秋葉 拓哉 (@iwiwi)
アウトライン
1. B-Tree が何故使われるのか? (復習)

2. Cache-Oblivious の考え方と意義
3. Cache-Oblivious 探索木 (vEB Layout)
4. 世の中の Cache-Oblivious 事例

Cache-Oblivious データ構造入門 (@iwiwi)

3
MySQL の索引のデータ構造は?
http://dev.mysql.com/doc/refman/5.1/ja/mysql-indexes.html

Cache-Oblivious データ構造入門 (@iwiwi)

!!!
4
MySQL の索引のデータ構造は?

B-Tree!
MySQL に限らず多くのデータベースシステムは
B-Tree を使います

Cache-Oblivious データ構造入門 (@iwiwi)

5
MySQL の索引のデータ構造は?

なんで B-Tree?
普通の二分探索木じゃだめ?

Cache-Oblivious データ構造入門 (@iwiwi)

6
なぜ B-Tree?

と
http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Memory_module_DDRAM_20-03-2006.jpg

http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Hdd_medalist.jpg

があるから
Cache-Oblivious データ構造入門 (@iwiwi)

7
なぜ B-Tree
メモリは高速
でも小さい
ディスクは遅い
でも大きい
大規模なデータベースは
ディスクに保存されていて
メモリに読み込みながら処理をする.
Cache-Oblivious データ構造入門 (@iwiwi)

8
B-Tree のデータ構造
普通の二分探索木

B-Tree

多分木になってる
(最大の分岐数 m)

Cache-Oblivious データ構造入門 (@iwiwi)

9
なぜ B-Tree の方が良いか?
大事な前提(若干雑)
1. ディスクの読み込み時間 >> 計算時間
2. ディスクである箇所を読み込むと周辺も含
めてそこそこ大きく読まれる

前提より
• ディスクを読み込む回数だけを考える
– 普段の議論:「O(ほげ) 時間」
– 今回の議論:「ディスクI/O 𝑂(ほげ) 回」

• 一度に読み込まれるサイズを 𝐵 とおく
Cache-Oblivious データ構造入門 (@iwiwi)

10
データの探索にかかる I/O 回数
二分探索木
• 𝑂 log 𝑛 回
一回の I/O で 2 分岐

B-Tree
• 𝑂 log 𝐵 𝑛 回

一回の I/O で Θ(𝐵) 分岐!

↑ノードのサイズをブロックサイズ 𝐵に合わせる

B-Tree のほうが log 𝐵 倍ぐらい早い
これは平気で 10 倍とかになるので大違い!
Cache-Oblivious データ構造入門 (@iwiwi)

11
このように

ディスクとメモリを使うなら
そのことを意識したデータ構造を
使う必要がある!

Cache-Oblivious データ構造入門 (@iwiwi)

12
ちなみに
メモリとキャッシュメモリ間でも
似たようなことを考えないといけない
より一般に,「メモリ階層」を意識しないといけない
(↓こういうやつ)
レジスタ
L1
L2
L3
メモリ
ディスク
テープ?

Cache-Oblivious データ構造入門 (@iwiwi)

13
Cache-Oblivious とは

Cache-Oblivious データ構造入門 (@iwiwi)

14
Cache-Oblivious

Cache-oblivious = キャッシュを忘れて
Cache-Oblivious データ構造入門 (@iwiwi)

15
Cache-Oblivious

えっ!?

忘れてしまうの?
Cache-Oblivious データ構造入門 (@iwiwi)

16
Cache-Oblivious

えっ!?

忘れてしまうの?
Cache-Oblivious データ構造入門 (@iwiwi)

17
Cache-Aware vs. Cache-Oblivious
Cache-Aware = 普通
ブロックのサイズ 𝐵 を事前に
知っていて,それを使ってデータ構造を設計する
(例:B-Tree)

Cache-Oblivious = 縛りプレイ
ブロックのサイズ 𝐵 を知らないことにする!
知らないなりに頑張る
𝐵 がどんな値であったとしてもいい感じになるよう頑
張る
※本当はメモリサイズ 𝑀 というパラメータもあって,同様にそれも知らない
ことにする.今回は出てこないので省略
Cache-Oblivious データ構造入門 (@iwiwi)

18
Cache-Aware vs. Cache-Oblivious
計算機の動きの前提は同じ
• 読み込みの回数を計算量とする
• 一回に 𝐵 バイト読み込まれる

やりたいことも同じ (例:探索木)
ただし,Cache-Oblivious データ構造は
𝑩 の値を使ってはいけない
(つまり𝐵の値を事前に知らない)
Cache-Oblivious データ構造入門 (@iwiwi)

19
Cache-Oblivious でない例
B-Tree は Cache-Oblivious ではない

↑ノードのサイズをブロックに合わせる

ブロックサイズ 𝐵 を知らないと
何分木にしていいかわからない!
ブロックサイズ 𝐵 を使ってデータ構造を設計している

Cache-Oblivious データ構造入門 (@iwiwi)

20
なんでそんなことをするのか?
Cache-Oblivious データ構造の利点

1つめ:
ブロックサイズに合わせたパラメータ調整を環境
ごとに行う必要がない!
ポータブル,手軽に使える

Cache-Oblivious データ構造入門 (@iwiwi)

21
なんでそんなことをするのか?
Cache-Oblivious データ構造の利点

2つめ:
全てのメモリ階層ギャップに最適化される
• ディスク ⇔ メモリ・・・ 𝐵Mem
• メモリ ⇔ キャッシュ・・・𝐵Cache
どんな 𝐵 の値でも性能が出る
→ どこのギャップに関しても良い性能!
Cache-Oblivious データ構造入門 (@iwiwi)

22
なんでそんなことをするのか?
Cache-Oblivious データ構造の利点

2つめ:
全てのメモリ階層ギャップに最適化される
データの大きさによってボトルネックは変わる
• メモリに収まる? → 𝐵Cache
• 収まらない? → 𝐵Mem
扱うデータのサイズによらず高性能なプログラム
にできる
Cache-Oblivious データ構造入門 (@iwiwi)

23
そんな都合の良いものが作れるの?
作れるんです!

Cache-Oblivious データ構造入門 (@iwiwi)

24
Cache-Oblivious 探索木
(vEB Layout)
Cache-Oblivious データ構造入門 (@iwiwi)

25
二分探索木があります

Cache-Oblivious データ構造入門 (@iwiwi)

26
以降,三角形を二分探索木と思って下さい

Cache-Oblivious データ構造入門 (@iwiwi)

27
でかい二分探索木をイメージして下さい

𝑛 ノード

Cache-Oblivious データ構造入門 (@iwiwi)

28
このツリーをディスクによさげに保存する

𝑛 ノード

高さ
ℎ = log 2 𝑛

ディスク
Cache-Oblivious データ構造入門 (@iwiwi)

29
高さがだいたい半分のところで切る

高さ ℎ/2

Cache-Oblivious データ構造入門 (@iwiwi)

30
上半分は約

𝒏 ノードの木になる

約 𝒏
ノード

Cache-Oblivious データ構造入門 (@iwiwi)

高さ ℎ/2

31
切れ目(=上半分の木の葉)には約

𝒏 ノード

約 𝑛
ノード

約

𝒏

Cache-Oblivious データ構造入門 (@iwiwi)

32
下半分にぶら下がってる木も約

𝒏 ノード

約 𝑛
ノード

高さ ℎ/2

約 𝑛
ノード

Cache-Oblivious データ構造入門 (@iwiwi)

33
それが約

𝒏 個ある

約 𝑛
ノード

…… 約

𝑛
ノード

……
約

𝒏個

Cache-Oblivious データ構造入門 (@iwiwi)

34
約 𝒏 ノード × 約 𝒏 個

𝑇0
……

𝑇1 𝑇2

𝑇

Cache-Oblivious データ構造入門 (@iwiwi)

𝑛

35
それぞれの木を連続部分に保存!

𝑇0
……

𝑇1 𝑇2

ディスク

𝑇0

𝑇

𝑇1
Cache-Oblivious データ構造入門 (@iwiwi)

𝑛

𝑇2

…

𝑇

𝑛

36
それぞれの木はどうやって保存?

約 𝒏
ノード

ディスク
Cache-Oblivious データ構造入門 (@iwiwi)

37
それぞれの木はどうやって保存?

約 𝒏
ノード

再帰的に同じことをする!
またこのツリーを上下に分割

ディスク
Cache-Oblivious データ構造入門 (@iwiwi)

38
こうやってツリーを保存することを

vEB Layout

𝑇0

(vEB = Van Emde Boas)
と呼びます

……

𝑇1 𝑇2

ディスク

𝑇0

𝑇

𝑇1
Cache-Oblivious データ構造入門 (@iwiwi)

𝑛

𝑇2

…

𝑇

𝑛

39
vEB Layout の性質
Cache-Oblivious である!
再帰してるだけ.ブロックサイズ 𝐵 は出てこなかった.
𝐵 を全く知らずに構築したのに……なんと

要素の探索が I/O 𝑂 log 𝐵 𝑛 回でできる!
↑
𝑩 を知ってて作った B-Tree と性能が一致!
(オーダー記号に隠れた定数倍を除いて)

(𝐵 : ブロックのサイズです ← 忘れた人むけ)
Cache-Oblivious データ構造入門 (@iwiwi)

40
vEB Layout の性質
Cache-Oblivious である!
再帰してるだけ.ブロックサイズ 𝐵 は出てこなかった.
𝐵 を全く知らずに構築したのに……なんと

要素の探索が I/O 𝑂 log 𝐵 𝑛 回でできる!
↑
𝑩 を知ってて作った B-Tree と性能が一致!
(オーダー記号に隠れた定数倍を除いて)

最悪の場合でも I/O 回数は
(𝐵 : ブロックのサイズですlog 𝐵 𝑛 回
2 + 4 ← 忘れた人むけ)
Cache-Oblivious データ構造入門 (@iwiwi)

41
計算量
𝑶 𝐥𝐨𝐠

𝑩

𝒏 回の読み込みでできる理由

ツリーのサイズ:𝑛,

𝑛, 4 𝑛, 8 𝑛, 16 𝑛, … …

いつかサイズは 𝐵 以下になる
そしてその時,少なくとも

𝐵

サイズが 𝐵 以下になったら一気に読み込まれる
→ 結局多分木みたいに動作する( Ω 𝐵 分木)
Cache-Oblivious データ構造入門 (@iwiwi)

42
ちなみに:Cache-Oblivious 関係ない話
木でこういう分割をするのは,
vEB Tree というデータ構造でも使う
vEB Tree はキーの値の範囲の条件下で
• 検索が 𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 時間
でできるおもしろデータ構造です
http://en.wikipedia.org/wiki/Van_Emde_Boas_tree

Cache-Oblivious データ構造入門 (@iwiwi)

43
世の中の Cache-Oblivious 事例

Cache-Oblivious データ構造入門 (@iwiwi)

44
他の Cache-Oblivious データ構造・アルゴリズム

データ構造
• 動的な探索木 (CO B-Tree)

– さっきのは静的な木だったので実際に動的にしようと思うと
もっと複雑なものが必要

• 順位キュー
• リスト
• ……

アルゴリズム
•
•
•
•

ソート (Funnel Sort)
FFT,行列乗算
グラフ探索
……

いっぱい
あります!

Cache-Oblivious データ構造入門 (@iwiwi)

45
Cache-Oblivious は本当に実用的か?
利点もあるけど,浸透しにくい
問題点1:
複雑すぎる物が多い
理論屋さんがオーダー記法での計算量だけを考えて作っている実装し
たくないものが多い

問題点2:
Cache-Aware に中々勝てない
定数倍の差はあり実測では速度で負けてしまう

Cache-Oblivious データ構造入門 (@iwiwi)

46
事例

TokuDB
MySQL, MariaDB 用ストレージエンジン

Fractal Tree™ Index なるものを使うらしい

Cache-Oblivious データ構造入門 (@iwiwi)

47
Fractal Tree™ Index
Wikipedia

公式

Cache-Oblivious データ構造入門 (@iwiwi)

48
事例

𝑇0
……

𝑇1 𝑇2

𝑇

𝑛

確かにフラクタルっぽい(?)
(※実際には Fractal Tree Index は vEB Layout より複雑なことをしています)

Cache-Oblivious データ構造入門 (@iwiwi)

49
論文 (MIT CSAIL)
Cache-Oblivious Streaming B-trees
Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan
Fogel, Bradley Kuszmaul, and Jelani Nelson
SPAA’07
Cache-Oblivious String B-Trees
Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul
PODS’06
Concurrent Cache-Oblivious B-Trees
Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C.
Kuszmaul
SPAA’05

Cache-Oblivious データ構造入門 (@iwiwi)

50
論文 (MIT CSAIL)
Cache-Oblivious Streaming B-trees
Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan
Fogel, Bradley Kuszmaul, and Jelani Nelson
SPAA’07

Chief Scientist

CTO

Chief Architect

Cache-Oblivious String B-Trees
Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul
PODS’06
Concurrent Cache-Oblivious B-Trees
Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C.
Kuszmaul
SPAA’05

MIT の Cache-Oblivious 研究ガチ勢の起業!
Cache-Oblivious データ構造入門 (@iwiwi)

51
使っているっぽい雰囲気?
TokuDB の公式サイトにあるスライド

http://www.tokutek.com/wp-content/uploads/2011/11/how-fractal-trees-work.pdf

Cache-Oblivious データ構造入門 (@iwiwi)

52
まとめ
• メモリ階層を意識したデータ構造

• Cache-Oblivious の考え方
• 基礎的テク:ツリーの vEB Layout
• 世の中の事例と課題
ありがとうございましたm(__)m
Cache-Oblivious データ構造入門 (@iwiwi)

53
おまけ:van Emde Boas の発音

https://www.youtube.com/watch?v=AjFtTQevtq0#t=14m15

Peter van Emde Boas と友人である Erik D. Demaine (MIT)
による発音が YouTube で聞けます
Cache-Oblivious データ構造入門 (@iwiwi)

54
謝辞
@kumagi さんのご意見をもとに発表時からスライド
を改訂しています,ありがとうございます.
@tmaehara さんに “van Emde Boas” さんの発音情報
を教えてもらいました,ありがとうございます.

Cache-Oblivious データ構造入門 (@iwiwi)

55

Cache-Oblivious データ構造入門 @DSIRNLP#5