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Introduction1 The eXplicit Multi-Threading (XMT) on-chip 
general-purpose computer architecture is aimed at the classic goal 
of reducing single task completion time. It is a parallel 
algorithmic architecture in the sense that: (i) it seeks to provide 
good performance for parallel programs derived from Parallel 
Random Access Machine/Model (PRAM) algorithms, and (ii) a 
methodology for advancing from PRAM algorithms to XMT 
programs, along with a performance metric and its empirical 
validation are provided [1]. Ease of parallel programming is now 
widely recognized as the main stumbling block for extending 
commodity computer performance growth (e.g., using multi-
cores). XMT provides a unique answer to this challenge. This 
brief announcement (BA) reports first commitment to silicon of  
XMT. A 64-processor, 75MHz computer based on field-
programmable gate array (FPGA) technology was built at the 
University of Maryland (UMD). XMT was introduced in 
SPAA’98. An architecture simulator and speed-up results on 
several kernels were reported in SPAA’01. The new computer is a 
significant milestone for the broad PRAM-On-Chip project at 
UMD. In fact, contributions in the current BA include several 
stages since SPAA’01: completion of the design using a hardware 
description language (HDL), synthesis into gate level “netlist”, as 
well as validation of the design in real hardware. This overall 
progress, its context and uses of the much faster hardware over a 
simulator are the focus of this BA.   
The PRAM virtual model of computation assumes that any 
number of concurrent accesses to a shared memory take the same 
time as a single access. In the Arbitrary Concurrent-Read 
Concurrent-Write (CRCW) PRAM concurrent access to the same 
memory location for reads or writes are allowed. Reads are 
resolved before writes and an arbitrary write unknown in advance 
succeeds.  Design of an efficient parallel algorithm for the 
Arbitrary CRCW PRAM  model would seek to optimize the total 
number of operations the algorithms performs (“work”) and its 
parallel time (“depth”) assuming unlimited hardware. Given such 
an algorithm, an XMT program is written in XMTC, which is a 
modest single-program multiple-data (SPMD) multi-threaded 
extension of C that includes 3 commands: Spawn, Join and PS, 
for Prefix-Sum—a Fetch-and-Increment-like command. The 
program seeks to optimize: (i) the length of the (longest) sequence 
of round trips to memory (LSRTM), (ii) queuing delay to the 
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same shared memory location (known as QRQW), and (iii) work 
and depth (as per the PRAM model). Optimizing these ingredients 
is a responsibility shared in a subtle way between the 
architecture, the compiler, and the programmer/algorithm 
designer. See also [1]. For example, the XMT memory 
architecture requires a separate round-trip to the first level of the 
memory hierarchy (MH) over the interconnection network for 
each and every memory access; this is unless something (e.g., 
prefetch) is done to avoid it; and our LSRTM metric accounts for 
that. While we took advantage of Burton Smith’s latency hiding 
pipelining technique for code providing abundant parallelism, the 
LSRTM metric guided design for good performance from any 
amount of parallelism, even if it is rather limited. Moving data 
between MH levels (e.g.,  main memory to first-level cache) is 
generally orthogonal and amenable to standard caching 
approaches. In addition to XMTC many other application-
programming interfaces (APIs) will be possible; e.g., 
VHDL/Verilog, MATLAB, and OpenGL. 
A brain child of the SPAA community, the well-developed 
PRAM algorithmic theory is second in magnitude only to its 
serial counterpart, well ahead of any other parallel approach. 
Circa 1990 popular serial algorithms textbooks already had a big 
chapter on PRAM algorithms. Theorists (UV included) also 
claimed for many years that the PRAM theory is useful. However, 
the PRAM was generally deemed useless (e.g., see the 1993 
LOGP paper). Since the mid-1990s, PRAM research was reduced 
to a trickle, most of its researchers left it, and later book editions 
dropped their PRAM chapter. The 1998 state-of-the-art is 
reported in Culler-Singh’s parallel computer architecture book: “.. 
breakthrough may come from architecture if we can truly design a 
machine that can look to the programmer like a PRAM”. In 2007, 
we are a step closer as hardware replaces a simulator. The current 
paper seeks to advance the perception of PRAM implementability 
from impossible to available. The new computer provides 
freedom and opportunity to pursue PRAM-related research, 
development and education [2] without waiting for vendors to 
make the first move. The new XMT computer is 11-12K times 
faster than our XMT cycle-accurate simulator (46 minutes replace 
1 year). This wall clock gap is itself a significant contribution: 
heavier programs and applications and larger inputs to study 
scalability can now be run. If runs of the XMT computer grossed 
18 hours for this BA, simulator results would have been ready for 
SPAA 2030. A programming assignment that ran over an hour on 
a simulator in the Spring’06 UMD Parallel Algorithms course 
takes under a second in Spring’07. Also, a general-purpose 
algorithms course with its own computer, programming 
methodology [1], programming language, and compiler is rather 
uncommon. 
Overview of the XMT Architecture and Computer The 
XMT processor (see Fig 1) includes a master thread control unit 
(MTCU), processing clusters (C0...Cn in Fig 1) each comprising 
several TCUs, a high-bandwidth low-latency interconnection 
network, memory modules (MMs) each comprising on-chip 
cache and off-chip memory, a global register file (GRF) and a 
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The new XMT system consists of 3 FPGA chips graciously 
donated by Xilinx : 2 Virtex-4 LX200 and 1 Virtex-4 FX100. PCI 
is used as the interface. In order to prototype as much parallelism 
(e.g., number of TCUs) as possible: (i) there is no floating point 
(FP) support, and (ii) the MTCU is a weak in-order processor. 
Specifications of the system are presented in the table below. To 
fully utilize the bandwidth of the interconnection network, two 
cache modules are sharing one interconnection network port, 
resulting in a total of 8 cache modules.   

prefix-sum unit. Fig. 1 suppresses the sharing of a memory 
controller by several MMs. The processor alternates between 
serial mode, where only the MTCU is active, and parallel mode. 
The MTCU has a standard private data cache used only in serial 
mode and a standard instruction cache. The TCUs do not have a 
write data cache. They and the MTCU all share the MMs. Our 
SPAA’01 paper describes the way in which: (i) the XMT 
apparatus of the program counters and stored program extends 
the standard von-Neumann serial apparatus, (ii) virtual threads 
coming from an XMTC program (these are not OS threads) are 
allocated dynamically at run time, for load balancing, to TCUs, 
(iii) hardware implementation of the PS operation and its 
coupling with a global register file (GRF), (iv) independence of 
order semantics (IOS) that allows a thread to advance at its own 
speed without busy-waiting for other concurrent threads and its 
tie to Arbitrary CW, and (v) a more general design ideal, called 
no-busy-wait finite-state-machines (NBW FSM), guides the 
overall design of XMT. In principle, the MTCU is an advanced 
serial microprocessor that can also execute XMT instructions 
such as spawn and join. Typical program execution flow is shown 
on Fig.2. The MTCU broadcasts the instructions in a parallel 
section, that starts with a spawn command and ends with a join 
command, on a bus connecting to all TCU clusters. In parallel 
mode a TCU can execute one thread at a time. TCUs have their 
own local registers and they are simple in-order pipelines 
including fetch, decode, execute/memory-access and write back 
stages. The new computer has 64 TCUs in 4 clusters of 16 TCUs 
each. (We aspire to have 1024 TCUs in 64 clusters in the future). 
A cluster has functional units shared by several TCUs and one 
load/store port to the interconnection network, shared by all its 
TCUs. The global memory address space is evenly partitioned 
into the MMs using a form of hashing. In particular, the cache-
coherence problem, a challenge for scalability, is eliminated:  in 
principle, there are no local caches at the TCUs. Within each 
MM, order of operations to the same memory location is 
preserved; a store operation is acknowledged once the cache 
module accepts the request, regardless if it is a cache hit or miss. 
Some performance enhancements were already incorporated in 
the XMT computer seeking to optimize LSRTM and queuing 
delay: (i) broadcast: in case most threads in a spawn-join section 
need to read a variable, it is broadcasted through the instruction 
broadcasting bus to TCUs rather than reading the variable serially 
from the shared memory. (ii) Software prefetch mechanism with 
hardware support to alleviate the interconnection network round 
trip delay. A prefetch instruction brings the data to a prefetch 
buffer at the TCUs. (iii) Non-blocking stores where the program 
allows a TCU to advance once the interconnection network 
accepts a store request without waiting for an acknowledgement.  

Some specifications of the FPGA XMT system 
Clock rate 75 MHz Number of TCUs 64  (4 X 16) 
Memory size 1GB DDR2  Shared cache size 64KB (8 X 8) 
Mem. data rate 2.4GB/s MTCU local cache 8KB 
 
Execution time in seconds 
Application Basic XMT Opteron 
M_Mult 182.8 80.44  113.83 
Sorting 16.066 7.573 2.615 
Two applications were tested: (i) dense integer matrix 
multiplication and (ii) randomized quicksort. Column XMT in the 
execution time table gives the XMT computer execution time. 
Column Basic gives XMT time without the 3 enhancements 
above. Column Opteron gives time of a 2.6 GHz AMD Opteron 
processor, with 64KB+64KB L1, 1MB L2, memory bandwidth 
6.4GB/s (2.67X larger than XMT) using GCC in RedHat Linux 
Enterprise 3. Integer multiplication takes 5 cycles in the FPGA 
system. Since FP multiplication often also takes around 5 cycles, 
execution time on XMT system with FP support should also be 
similar. The size of the matrix was 2000x2000. The serial sorting 
is a standard randomized quicksort. A known parallel quicksort 
was used for XMT. Input size was 20 million integers. As can be 
seen, the run time of the 75MHz XMT parallel computer was a bit 
faster than the recent 2.6 GHz AMD uniprocessor on matrix 
multiplication and slower on quicksort.  Also, initial performance 
study of the FPGA implementation for several micro-benchmarks 
confirms prior simulation-based results. Ongoing work includes  
architecture analysis using the FPGA system as a prototype. 
Conclusion Using on-chip low overhead mechanisms including a 
high throughput interconnection network XMT executes PRAM-
like programs efficiently. As XMT evolved from PRAM 
algorithm, it gives (i) an easy general-purpose parallel 
programming model, while still providing (ii) good performance 
with any amount of parallelism provided by the algorithm (up- 
and down-scalability), and (iii) backwards compatibility on serial 
code using its powerful MTCU with its local cache. Most other 
parallel programming approaches need more coarse-grained 
parallelism, requiring a (painful to program) decomposition step.  

 
Fig. 2 Parallel and serial modeFig.1 Block diagram of XMT 
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A single (though hard working) individual (X. Wen) with no 
prior design experience was able to complete synthesizable HDL 
description in Verilog, as well as the new FPGA-based XMT 
computer in slightly more than two years. This attests to the basic 
simplicity of the XMT architecture and ease of implementing it 
(in addition to the relative simplicity of its parallel 
programming).   
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