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ADMINISTRIVIA

Project #1 is due October 1°* @ 11:59pm
— Special Office Hours: Saturday Sept 30" @ 3pm-5pm

Homework #2 is due Wed Oct 4 @ 11:59pm
Homework #3 is due Sun Oct 8" @ 11:59pm

Mid-Term Exam is Wednesday Oct 11

— During regular class time from 2:00-3:20pm
— Please contact us if you need accommodations.
— More details next week...
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OBSERVATION

We (mostly) assumed all the data structures that
we have discussed so far are single-threaded.

But a DBMS needs to allow multiple threads to

safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

‘ They Don't Do This!

YOLTDB
&8 redis Ls]-Store
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CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?
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TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching
Leaf Node Scans
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LOCKS VS. LATCHES

Locks (Transactions)

— Protect the database's logical contents from other
transactions.

— Held for transaction's duration.

— Need to be able to rollback changes.

Latches (Workers)

— Protect the critical sections of the DBMS's internal data
structure from other workers (e.g., threads).

— Held for operation duration.

— Do not need to be able to rollback changes.
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Lecture #15 ’,

LOCKS VS. LATCHES

Locks Latches
Separate... Transactions Workers (threads, processes)
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure
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LATCH MODES

Read Mode

— Multiple threads can read the same object Compatibility Matrix
at the same time.

— A thread can acquire the read latch if ; Leaal W
another thread has it in read mode. Read| X

Write Mode el X X

— Only one thread can access the object.
— A thread cannot acquire a write latch if
another thread has it in any mode.
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LATCH IMPLEMENTATION GOALS

Small memory footprint.

Fast execution path when no contention.

Deschedule thread when it has been waiting for
too long to avoid burning cycles.

Each latch should not have to implement their
own queue to track waiting threads.

£ CMU-DB Source: Filip Pizlo
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LATCH IMPLEMENTATIONS

Test-and-Set Spinlock
Blocking OS Mutex
Reader-Writer Locks

Advanced approaches:

— Adaptive Spinlock (Apple Parkinglot)
— Queue-based Spinlock (MCS Locks)
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LATCH IMPLEMENTATIONS

Approach #1: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic<T>

std':atomic<bool>

std: :atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

}
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LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex—— pthread_mutex — futex

B 0S Latch
std: :mutex m; B Userspace Latch
m.lock(); ﬂ
// Do something special. ..

m.unlock();
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LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex — pthread_rwlock

g a a Latch

ti-6-6-a ﬁ—#

read wrlte

-2
X =1 2—1
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HASH TABLE LATCHING

Easy to support concurrent access due to the

limited ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).
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HASH TABLE LATCHING

Approach #1: Page Latches

— Each page has its own reader-writer latch that protects its
entire contents.

— Threads acquire either a read or write latch before they
access a page.

Approach #2: Slot Latches

— Each slot has its own latch.

— Can use a single-mode latch to reduce meta-data and
computational overhead.
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HASH TABLE - PAGE LATCHES

B|val
T Find D o
hash(D)
.\ A | val
C|val
D | val
£ CMU-DB
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HASH TABLE - PAGE LATCHES

B|val
T Find D o B T,: Insert E
hash(D) : hash(E)
A|val /
C|val

D | val
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HASH TABLE - PAGE LATCHES

B|val

T Find D o B T,: Insert E
hash(D) hash(E)
A|val /

»I C|val

D | val
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HASH TABLE - PAGE LATCHES

[ It’s safe to release the B | val

latch on Page #1.

B T,: Insert E

hash(D) e hash(E)
A|val /
C|val

» D|val
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HASH TABLE - PAGE LATCHES

B|val
T Find D B T,: Insert E

hash(D) hash(E)
A|val /
C|val

D | val
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HASH TABLE - PAGE LATCHES

B|val

T Find D
hash(D)

T,: Insert E
hash(E)

Alval

C|val h

D | val
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HASH TABLE - PAGE LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

D | val «g
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HASH TABLE - PAGE LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

D

D | val «g
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HASH TABLE - PAGE LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

D

D | val h
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HASH TABLE - PAGE LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
@a C|val
D | val
E|val I‘
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HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) @a hash(E)
Al val
C|val

D | val
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HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) (R ) hash(E)
N Alval /
C|val
D | val
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HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) (R ) hash(E)
YN Al
Clval 8
D | val
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HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hay s \safe to releasethe | R hash(E)
latch on A Al
W
Clva
D | val
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HASH TABLE - SLOT LATCHES

B|val

T Find D T,: Insert E
hash(D) hash(E)

o

D | val
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HASH TABLE - SLOT LATCHES

B| val
T Find D T,: Insert E
hash(D) hash(E)
Alval
g »I C|val

Dlgﬁ

£CMU-DB

15-445/645 (Fall 2023)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val

T Find D T,: Insert E
hash(D) hash(E)

n Alval
 aC|val
Dlgﬁ
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HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

o Y
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HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

E|va

11111111111111111111
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HASH TABLE - SLOT LATCHES

B|val

T Find D T,: Insert E
hash(D) hash(E)
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B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.
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B+TREE MULTI-THREADED EXAMPLE
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B+TREE MULTI-THREADED EXAMPLE
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B+TREE MULTI-THREADED EXAMPLE

/

10 35 B

6 12 le.%/ Cks 44 ||D

Y A W P
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B+TREE MULTI-THREADED EXAMPLE

/

10 35 B

6 12 le.%/ Cks 44 ||D
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ol 1A T,: Delete 44
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B+TREE MULTI-THREADED EXAMPLE

2] A 4= T,: Delete 44

/ T,: Find 41

10 35 B
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B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41
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B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41
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B+TREE MULTI-THREADED EXAMPLE
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B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41
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LATCH CRABBING/COUPLING

Protocol to allow multiple threads to

access/modify B+Tree at the same time.

— Get latch for parent
— Get latch for child
— Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.

— Not full (on insertion)
— More than half-full (on deletion)
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LATCH CRABBING/COUPLING

Find: Start at root and traverse down the tree:

— Acquire R latch on child,
— Then unlatch parent.
— Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is

latched, check if it is safe:
— If child is safe, release all latches on ancestors
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EXAMPLE #1 - FIND 38
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EXAMPLE #1 - FIND 38

20 A

1/ - 35 B«

It is now safe to release
the latch on A.
6 2 73 C |[38]|44| D
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EXAMPLE #1 - FIND 38
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EXAMPLE #1 - FIND 38
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EXAMPLE #1 - FIND 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38

%28 A

1/ - 35 B«

(We may need to coalesce B, so
we cant release the latch on A.
S
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EXAMPLE #2 - DELETE 38
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/

10 35 B

6 12 le.%/ Cks 44 ||D
J V4N /) %}_
i 110|11712|13120|221123|31135[36 1

E F G H I

20 A

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

6 12 le.%/ Cks 44 ||D
J V4N /) %}_
i 110|11712|13120|221123|31135[36 1

E F G H I

20 A

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45
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EXAMPLE #3 - INSERT 45
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EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

$CMU-DB

15-445/645 (Fall 2023)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25
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EXAMPLE #4 - INSERT 25
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OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

r

.

%

Delete 38

A

~N

r

J

.

T

Insert 45

A

%

Insert 25

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.
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BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

[f you guess wrong, repeat traversal
with the pessimistic algorithm.
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Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that cach operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures arc being used o support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements, An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-t can be used in a multi-user

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation 1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 10 the profile of the current set of users. Another property of the

* Permanent adress: Institut fue Informatik der Technischen Universitit Minchen, Arcisstr, 21,

D-8000 Miinchen 2, Germany (Fed. Rep)
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BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
— Set latches as if for search, get to leaf, and set W latch on

leaf.

— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #2 - DELETE 38
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EXAMPLE #4 - INSERT 25

/
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We need to split F, so we —
have to restart and re- G H l
execute like before.
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OBSERVATION

The threads in all the examples so far have

acquired latches in a "top-down" manner.

— A thread can only acquire a latch from a node that is
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?
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LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4
1
13 ‘ A«
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LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

LG
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LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

3 f Do Inlot release latch on C ]

/ until thread has latch on B
1 (|2 [[—H 3|4

B «C
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LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

3 f Do Inlot release latch on C ]

until thread has latch on B
}ﬂ 1 (|2 [[—H 3|4

B «C
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LEAF NODE SCAN EXAMPLE #1

»}ﬂ1 2 |[[—1| 3 || 4

B C

T;: Find Keys < 4
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LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
: ,: Find Keys > 1
3 || A«
1| 2 | 3 || 4
B C
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

L
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1
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LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
| Both T, and T, now hol:ljzz S Keys >

this read latch.
— 11 3| 4

B» «C

Both T, and T, now hold
this read latch.
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LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
| Both T, and T, now hol:ljzz S Keys >

this read latch.
i,
—H3[«]4m

B C

Both T, and T, now hold
this read latch.
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LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
[ Only T, holds ] | Only T, holds ] TZ: S Keys >

this read latch. | this read latch.
@ﬂ/z s ERIERIE

B C
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

£CMU-DB

15-445/645 (Fall 2023)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

105

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
n: T,: Find Keys > 1
13 A «
1| 2 [[—1| 3] 4
B C

£CMU-DB

15-445/645 (Fall 2023)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

106

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

%”/ nol
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

2 T, cannot acquire ]
the read latch on C
AN

% 2

T, does not know
what T, is doing...
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

2 T, cannot acquire
the read latch on C

T, Choices? IN

g Wait 1 —1: L) «
@ Kill Ourself

R Kill Other Thread [ tfitg:% :‘s";‘ﬁ'&w ]
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LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

2 T, cannot acquire ]

the read latch on C
T, Choices? %/ IN
1 B OR
B
@ Kill Ourself A

T, does not know
what T, is doing...
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LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.
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CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.
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NEXT CLASS

We are finally going to discuss how to execute
some queries...
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COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

New
Address Value

2@ __sync_bool_compare_and_swap(&1, 20, 30) «

Compare
£2CMU-DB Value

15-445/645 (Fall 2023)
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