—
(amegie |ntro to Database

N W7 (i w7
Universiy - Systems (15-445/645) L (g 10
\ \ ‘\ ‘\ \"“\ \\\ A ;l r
Lecture #09 A g

Index :

Concurrency
Control

FALL 2023)) Prof.Andy Pavio ® Prof.Jignesh Patel

https://15445.courses.cs.cmu.edu/fall2022
https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15445.courses.cs.cmu.edu/fall2022
https://15445.courses.cs.cmu.edu/fall2022

ADMINISTRIVIA

Project #1 is due October 1°* @ 11:59pm
— Special Office Hours: Saturday Sept 30" @ 3pm-5pm

Homework #2 is due Wed Oct 4 @ 11:59pm
Homework #3 is due Sun Oct 8" @ 11:59pm

Mid-Term Exam is Wednesday Oct 11

— During regular class time from 2:00-3:20pm
— Please contact us if you need accommodations.
— More details next week...

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

OBSERVATION

We (mostly) assumed all the data structures that
we have discussed so far are single-threaded.

But a DBMS needs to allow multiple threads to

safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

‘ They Don't Do This!

YOLTDB
&8 redis Ls]-Store

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://voltdb.com/
https://redis.io/

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching
Leaf Node Scans

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LOCKS VS. LATCHES

Locks (Transactions)

— Protect the database's logical contents from other
transactions.

— Held for transaction's duration.

— Need to be able to rollback changes.

Latches (Workers)

— Protect the critical sections of the DBMS's internal data
structure from other workers (e.g., threads).

— Held for operation duration.

— Do not need to be able to rollback changes.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

Lecture #15 ’,

LOCKS VS. LATCHES

Locks Latches
Separate... Transactions Workers (threads, processes)
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

£CMU-DB

15-445/645 (Fall 2023)

Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15445.courses.cs.cmu.edu/fall2021/schedule.html#oct-27-2021

LATCH MODES

Read Mode

— Multiple threads can read the same object Compatibility Matrix
at the same time.

— A thread can acquire the read latch if ; Leaal W
another thread has it in read mode. Read| X

Write Mode el X X

— Only one thread can access the object.
— A thread cannot acquire a write latch if
another thread has it in any mode.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATCH IMPLEMENTATION GOALS

Small memory footprint.

Fast execution path when no contention.

Deschedule thread when it has been waiting for
too long to avoid burning cycles.

Each latch should not have to implement their
own queue to track waiting threads.

£ CMU-DB Source: Filip Pizlo

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://webkit.org/blog/6161/locking-in-webkit/

£2CMU-DB

15-445/645 (Fall 2023)

LATCH IM

The whole Post seems to he Justwrong, i
measuring.

First off, spinlocks can only be used if You actually know You're not b
rmplementing his own spinlocks in user space with
claimed "lock not held” timing is complete garbag

Small memor

Y reads the time before releasing the lock, and then it r
ime when no lock was held. Which is just i

€ads if after acquiring the Jogk again, and claims that the tj
Nane and pointless and completely wrong.
That's pure garbage. What happens is that

Fast executio

Deschedule t
too long to a

(a} since you're Spinning, you're using CPy time

(b) at a random time, the scheduler will schedule yoy oyt
(c) that random ti

Somebody else comes inand wants that "spinlock",
held by that ot

and that Somebody wil| Now spin for g long while
her thread entirely that was Just schedyled out. At some poin
schedules the origj i
the time and s,

Each latch sh

own queue t

he good Schenario, If yoy have more threads € because of other Processes unrejateq
own test joad), maybe the next thread that gets sheeduled isn't the one that s going to release the lock
timeslice, so the next thread schedyjeg might be another thread that wants
running right now!

eing scheduled while using them. But the blog post author seems fo be
no regard for whether the lock user might be scheduled or not. And the code used for the
e.

me difference s

Source: Filip Pizlo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://webkit.org/blog/6161/locking-in-webkit/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

LATCH IM

The whole Post seems to he Justwrong, i
Mmeasuring.

ks can only be use
implementing his ow

N spinlocks in
claimed "lock not held” timing is co,

Small memor

Y reads the time before releasing the lock, and then it r
ime when no lock was held. Which is just i

That's pure garbage. What happens is that

Fast executio
Deschedule t

(a} since you're Spinning, you're using CPy time

(b) at a random time, the scheduler will schedule yoy oyt

(c) that random time might ne iist afta,

Y know you're not being scheduled while using them. But the blog post author seems fo be
user space with no regard for whether the lock user might be scheduled or not. And the code used for the
mplete garbage.

€ads it after acquiring the Jogk again, and claims that the tj
Nane and pointless and completely wrong.

me difference s

u

i In user space, unless yo

; t use spinlocks in u iness Yo

ol oow 're doing. And be awa | .
ou're he '

alftll'lr?"gdkt'r:(;:vyg: i’;gw what you are doing is basically

likeliho

me" you

it's stilf
e", and
00ks at

d to your

in

£2CMU-DB

15-445/645 (Fall 2023)

Source: Filip Pizlo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://webkit.org/blog/6161/locking-in-webkit/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

LATCH IMPLEMENTATIONS

Test-and-Set Spinlock
Blocking OS Mutex
Reader-Writer Locks

Advanced approaches:

— Adaptive Spinlock (Apple Parkinglot)
— Queue-based Spinlock (MCS Locks)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/

13

LATCH IMPLEMENTATIONS

Approach #1: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic<T>

std':atomic<bool>

std: :atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

}

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex—— pthread_mutex — futex

B 0S Latch
std: :mutex m; B Userspace Latch
m.lock(); ﬂ
// Do something special. ..

m.unlock();

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex — pthread_rwlock

g a a Latch

ti-6-6-a ﬁ—#

read wrlte

-2
X =1 2—1

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
http://man7.org/linux/man-pages/man7/futex.7.html

£CMU-DB

15-445/645 (Fall 2023)

HASH TABLE LATCHING

Easy to support concurrent access due to the

limited ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

HASH TABLE LATCHING

Approach #1: Page Latches

— Each page has its own reader-writer latch that protects its
entire contents.

— Threads acquire either a read or write latch before they
access a page.

Approach #2: Slot Latches

— Each slot has its own latch.

— Can use a single-mode latch to reduce meta-data and
computational overhead.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val
T Find D o
hash(D)
.\ A | val
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val
T Find D o B T,: Insert E
hash(D) : hash(E)
A|val /
C|val

D | val

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val

T Find D o B T,: Insert E
hash(D) hash(E)
A|val /

»I C|val

D | val

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

[It’s safe to release the B | val

latch on Page #1.

B T,: Insert E

hash(D) e hash(E)
A|val /
C|val

» D|val

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val
T Find D B T,: Insert E

hash(D) hash(E)
A|val /
C|val

D | val

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val

T Find D
hash(D)

T,: Insert E
hash(E)

Alval

C|val h

D | val

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

D | val «g

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

D

D | val «g

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

D

D | val h

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - PAGE LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
@a C|val
D | val
E|val I‘
£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) @a hash(E)
Al val
C|val

D | val

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) (R) hash(E)
N Alval /
C|val
D | val
£ CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) (R) hash(E)
YN Al
Clval 8
D | val
£ CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hay s \safe to releasethe | R hash(E)
latch on A Al
W
Clva
D | val
£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val

T Find D T,: Insert E
hash(D) hash(E)

o

D | val

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B| val
T Find D T,: Insert E
hash(D) hash(E)
Alval
g »I C|val

Dlgﬁ

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val

T Find D T,: Insert E
hash(D) hash(E)

n Alval
 aC|val
Dlgﬁ

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

o Y

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val
T Find D T,: Insert E
hash(D) hash(E)
Alval
C|val

E|va

11111111111111111111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

HASH TABLE - SLOT LATCHES

B|val

T Find D T,: Insert E
hash(D) hash(E)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE MULTI-THREADED EXAMPLE

/

10 35 B

6 12 le.%/ Cks 44 ||D

A N A \\
: 10|11 12]1320|22H{23]31H35(3638[41€44])

E F G H I

2] A 4= T,: Delete 44

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE MULTI-THREADED EXAMPLE

/

10 35 B

6 12 le.%/ Cks 44 ||D

j & '111'\1213—20/22'§3 31'3‘4 36'§8 4 «

E F G H I

ol 1A T,: Delete 44

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE MULTI-THREADED EXAMPLE

/

10 35 B

6 12 le.%/ Cks 44 ||D

Y A W P

11712[13120|22123|31135|3638 «
E F G H I

ol 1A T,: Delete 44

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE MULTI-THREADED EXAMPLE

/

10 35 B

6 12 le.%/ Cks 44 ||D

b s T

ol 1A T,: Delete 44

11R12113M™20(22123|31135|36138(4 «g

E F G H

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE MULTI-THREADED EXAMPLE

2] A 4= T,: Delete 44

/ T,: Find 41

10 35 B

6 12 le.%/ Cks 44 ||D

\/ \4 _l11_\1'213—2‘(4/22-§331-3£36'\34 Rebala«me!g

E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

L&
B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

6 12 le.%/ Cks 44 D«

\/ \4 _l11_\1'213—2‘(4/22-§331-3£36'\34 Rebala«me!g

E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

Y e P R

j & l \ / &(j \ Rebalance!
- H10(11 12|13 20|22H23|31H 35|36 H34{ 41} «

E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

L8
B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

o Y e P R

LA TN L LS

11712[13720|22123|31135|363 «
E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE MULTI-THREADED EXAMPLE

/

10

20

A

35

T,: Delete 44
T,: Find 41

w
N
(@))
(o)
—
S

117

13

311

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

B+TREE MULTI-THREADED EXAMPLE

ol 1A T,: Delete 44

/ T,: Find 41

10 35 B

I I 1101211320122 23(31H35 36'3@11
2 I

15-445/645 (Fall 2023)

w
N
(@))
(o)
—
S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to

access/modify B+Tree at the same time.

— Get latch for parent
— Get latch for child
— Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.

— Not full (on insertion)
— More than half-full (on deletion)

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LATCH CRABBING/COUPLING

Find: Start at root and traverse down the tree:

— Acquire R latch on child,
— Then unlatch parent.
— Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is

latched, check if it is safe:
— If child is safe, release all latches on ancestors

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #1 - FIND 38

Sin
_

10 35 B

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #1 - FIND 38

20 A

1/ - 35 B«

It is now safe to release
the latch on A.
6 2 73 C |[38]|44| D

w
N
(@))
(o)
—
S

11012(13120(22723|31 38

|
w
o1
(0
(@))]
|

PA LN LA LN

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #1 - FIND 38

/

10 35 B

20 A

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #1 - FIND 38

20 A
10 35 B
6 12 le.%/ C}

38|44 ||D
S\ N/ }_
: : 11-1213—2@22-2331-351

)
E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #1 - FIND 38

/

10 35 B

20 A

W €~
LN
o &€
o)
5 €—
e
N
|
N
IS
N S\\\
N
N
o €
w
U'I&
w
o)
a
o0
y
—

117 13 311

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

oW
— N

1 35 B

6 12 le.%/ Cks 44 ||D

1MR12|13M™20(221023|311135|3638

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

%28 A

1/ - 35 B«

(We may need to coalesce B, so
we cant release the latch on A.
S

6 12 23 C |[|38]|44|D

NN &1\41\54

w
SN
(@)}
O

110[11112[13 20|22 31 38
E F G H I

|
N
w
|
w
o1
(O8)
(@)}
|

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

i 1a
G

10 35 B

6 12 23 38|44 ||D «

j \4 l We know that D will not |
merge with C, so it is safe to
I 110|117 release latcheson Aand B. |38|41 44
E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

6 12 23 38|44 ||D «
j \4 l W e know that D will not \
merge with C, so it is safe to
- - 41 H44

11 release latcheson Aand B. |38
E F G H I

20 A

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

6 12 le.%/ Cks 44 ||D
J V4N /) %}_
i 110|11712|13120|221123|31135[36 1

E F G H I

20 A

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

6 12 le.%/ Cks 44 ||D
J V4N /) %}_
i 110|11712|13120|221123|31135[36 1

E F G H I

20 A

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

117 13 311

w(\
LN
o &€&
(o)
> [€—
Sl
|
N
()
l\)\
N
o €
L(.)Jk')l&
w
iy

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #3 - INSERT 45

%28 A

1/ - 35 B«

We know that if D needs to
split, B has room so it is safe
6 to release the latch on A. C |l38!l44||D
3(406|19n010|11012(1320(122R23|31135|36M138 4}14

E F G H I

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #3 - INSERT 45

20 A

G

10 35 B

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #3 - INSERT 45

20 A
/ W
10 35 B
6 12 23 38|44 ||D

[V DN J U T

1112(13/20(22R023|31H035(36138(41
[Node I will not split, so we I

w
N
(@))
(o)
—
S

can release B+D.
£2CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #3 - INSERT 45

/

10 35 B

20 A

6 12 23 C |[|38]|44|D

[V DN S U [

1112(13/20(22R023|31H035(36138(41
[Node I will not split, so we I

w
N
(@))
(o)
—
S

can release B+D.
£2CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #3 - INSERT 45

/

10 35 B

20 A

6 12 23 C |[|38]|44|D

[V DN S U [

1112(13/20(22R023|31H035(36138(41
[Node I will not split, so we

w
N
(@))
(o)
—
S

can release B+D.
£2CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #3 - INSERT 45

/

10 35 B

6 12 le.%/ Cks 44 ||D
BN R W
i H10[11H12]13H20|22H23|31{{35|36 38|41 44{45]
I

E F G H

20 A

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25
@m

/ W

10 35 B «

6 12 le.%/ Cks 44 ||D

LA LN LA AN

11712[13120|22123|31135|3638
E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25

20 A

1/ - 35 B«

6 12 le.%/ Cks 44 ||D

LA LN LA AN

11712[13120|22123|31135|3638
E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25

20 A

G

10 35 B

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

38|44 ||D

i 1101711012113 20[27 {88 y 638 4}14

~

We need to split F, so we need to
hold the latch on its parent node.

w
S
(@)}
O

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

38|44 ||D

i 1101711012113 20[27 {88 y 638 4}14

~

We need to split F, so we need to
hold the latch on its parent node.

w
S
(@)}
O

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25

/

10 35 B

20 A

38|44 ||D

I
i 1101101211320 (2288|294 638 4}14

~

We need to split F, so we need to
hold the latch on its parent node.
£2CMU-DB 31 J

15-445/645 (Fall 2023)

w
S
(@)}
O

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

r

.

%

Delete 38

A

~N

r

J

.

T

Insert 45

A

%

Insert 25

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

[f you guess wrong, repeat traversal
with the pessimistic algorithm.

£CMU-DB

15-445/645 (Fall 2023)

Acta Informatica 9, 1 - 21 (1977)

inger-Verlag 1977

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that cach operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures arc being used o support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements, An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-t can be used in a multi-user

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation 1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance 10 the profile of the current set of users. Another property of the

* Permanent adress: Institut fue Informatik der Technischen Universitit Minchen, Arcisstr, 21,

D-8000 Miinchen 2, Germany (Fed. Rep)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023
https://link.springer.com/article/10.1007/BF00263762

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:
— Set latches as if for search, get to leaf, and set W latch on

leaf.

— If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

2@ A «
o

1 35 B

6 12 le.%/ Cks 44 ||D

1MR12|13M™20(221023|311135|3638

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

20 A

1/ : 35 B«

6 12 le.%/ Cks 44 ||D

PA LN LA AN

11712[13120|22123|31135|3638
E F G H I

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

w
N
(@))
(o)
—
S

1MR12|13M™20(221023|311135|3638

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

j \' l 11-\1‘2 13—2{22-§3 31-3 4&

20 A

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

20 A

6 12 23 C |[|38]|44|D

R S oW

Node H will not coalesce,
so were safe!

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #2 - DELETE 38

/

10 35 B

6 12 le.%/ Cks 44 ||D

[V N S

11R12113M™120(22123|31135|36

Node H will not coalesce,
so were safe!

20 A

w
N
(@))
(o)
—
S

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

EXAMPLE #4 - INSERT 25

/

10 35 B

le.%/ Cks 44 |D

20 A

6 12
;/4 e ? 6-\3‘8 4}14
We need to split F, so we —
have to restart and re- G H l
execute like before.

$CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

£CMU-DB

15-445/645 (Fall 2023)

OBSERVATION

The threads in all the examples so far have

acquired latches in a "top-down" manner.

— A thread can only acquire a latch from a node that is
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4
1
13 ‘ A«

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

LG

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

3 f Do Inlot release latch on C]

/ until thread has latch on B
1 (|2 [[—H 3|4

B «C

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

5
LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4

3 f Do Inlot release latch on C]

until thread has latch on B
}ﬂ 1 (|2 [[—H 3|4

B «C

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

LEAF NODE SCAN EXAMPLE #1

»}ﬂ1 2 |[[—1| 3 || 4

B C

T;: Find Keys < 4

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

L
LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
: ,: Find Keys > 1
3 || A«
1| 2 | 3 || 4
B C

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

o
LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

L

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

100

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
T,: Find Keys > 1

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

101

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
| Both T, and T, now hol:ljzz S Keys >

this read latch.
— 11 3| 4

B» «C

Both T, and T, now hold
this read latch.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

102

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4
| Both T, and T, now hol:ljzz S Keys >

this read latch.
i,
—H3[«]4m

B C

Both T, and T, now hold
this read latch.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

103

LEAF NODE SCAN EXAMPLE #2

T;: Find Keys < 4
[Only T, holds] | Only T, holds] TZ: S Keys >

this read latch. | this read latch.
@ﬂ/z s ERIERIE

B C

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

104

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

105

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
n: T,: Find Keys > 1
13 A «
1| 2 [[—1| 3] 4
B C

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

106

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

%”/ nol

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

107

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

2 T, cannot acquire]
the read latch on C
AN

% 2

T, does not know
what T, is doing...

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

108

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

2 T, cannot acquire
the read latch on C

T, Choices? IN

g Wait 1 —1: L) «
@ Kill Ourself

R Kill Other Thread [tfitg:% :‘s";‘ﬁ'&w]

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

109

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
— T,: Find Keys > 1

2 T, cannot acquire]

the read latch on C
T, Choices? %/ IN
1 B OR
B
@ Kill Ourself A

T, does not know
what T, is doing...

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

110

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

111

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

112

NEXT CLASS

We are finally going to discuss how to execute
some queries...

£CMU-DB

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

113

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V

— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

New
Address Value

2@ __sync_bool_compare_and_swap(&1, 20, 30) «

Compare
£2CMU-DB Value

15-445/645 (Fall 2023)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2023

	Introduction
	Slide 1: Index Concurrency Control
	Slide 2: ADMINISTRIVIA
	Slide 3: OBSERVATION
	Slide 4: CONCURRENCY CONTROL
	Slide 5: TODAY'S AGENDA

	Latches
	Slide 6: LOCKS VS. LATCHES
	Slide 7: LOCKS VS. LATCHES
	Slide 8: LATCH MODES
	Slide 9: LATCH IMPLEMENTATION GOALS
	Slide 10: LATCH IMPLEMENTATION GOALS
	Slide 11: LATCH IMPLEMENTATION GOALS
	Slide 12: LATCH IMPLEMENTATIONS
	Slide 13: LATCH IMPLEMENTATIONS
	Slide 14: LATCH IMPLEMENTATIONS
	Slide 15: LATCH IMPLEMENTATIONS

	Hash Table Latching
	Slide 18: HASH TABLE LATCHING
	Slide 19: HASH TABLE LATCHING
	Slide 20: HASH TABLE – PAGE LATCHES
	Slide 21: HASH TABLE – PAGE LATCHES
	Slide 22: HASH TABLE – PAGE LATCHES
	Slide 23: HASH TABLE – PAGE LATCHES
	Slide 24: HASH TABLE – PAGE LATCHES
	Slide 25: HASH TABLE – PAGE LATCHES
	Slide 26: HASH TABLE – PAGE LATCHES
	Slide 27: HASH TABLE – PAGE LATCHES
	Slide 28: HASH TABLE – PAGE LATCHES
	Slide 29: HASH TABLE – PAGE LATCHES
	Slide 30: HASH TABLE – SLOT LATCHES
	Slide 31: HASH TABLE – SLOT LATCHES
	Slide 32: HASH TABLE – SLOT LATCHES
	Slide 33: HASH TABLE – SLOT LATCHES
	Slide 34: HASH TABLE – SLOT LATCHES
	Slide 35: HASH TABLE – SLOT LATCHES
	Slide 36: HASH TABLE – SLOT LATCHES
	Slide 37: HASH TABLE – SLOT LATCHES
	Slide 38: HASH TABLE – SLOT LATCHES
	Slide 39: HASH TABLE – SLOT LATCHES

	Latch Crabbing/Coupling
	Slide 40: B+TREE CONCURRENCY CONTROL
	Slide 41: B+TREE MULTI-THREADED EXAMPLE
	Slide 42: B+TREE MULTI-THREADED EXAMPLE
	Slide 43: B+TREE MULTI-THREADED EXAMPLE
	Slide 44: B+TREE MULTI-THREADED EXAMPLE
	Slide 45: B+TREE MULTI-THREADED EXAMPLE
	Slide 46: B+TREE MULTI-THREADED EXAMPLE
	Slide 47: B+TREE MULTI-THREADED EXAMPLE
	Slide 48: B+TREE MULTI-THREADED EXAMPLE
	Slide 49: B+TREE MULTI-THREADED EXAMPLE
	Slide 50: B+TREE MULTI-THREADED EXAMPLE
	Slide 51: LATCH CRABBING/COUPLING
	Slide 52: LATCH CRABBING/COUPLING
	Slide 53: EXAMPLE #1 – FIND 38
	Slide 54: EXAMPLE #1 – FIND 38
	Slide 55: EXAMPLE #1 – FIND 38
	Slide 56: EXAMPLE #1 – FIND 38
	Slide 57: EXAMPLE #1 – FIND 38
	Slide 58: EXAMPLE #2 – DELETE 38
	Slide 59: EXAMPLE #2 – DELETE 38
	Slide 60: EXAMPLE #2 – DELETE 38
	Slide 61: EXAMPLE #2 – DELETE 38
	Slide 62: EXAMPLE #2 – DELETE 38
	Slide 63: EXAMPLE #2 – DELETE 38
	Slide 64: EXAMPLE #2 – DELETE 38
	Slide 65: EXAMPLE #3 – INSERT 45
	Slide 66: EXAMPLE #3 – INSERT 45
	Slide 67: EXAMPLE #3 – INSERT 45
	Slide 68: EXAMPLE #3 – INSERT 45
	Slide 69: EXAMPLE #3 – INSERT 45
	Slide 70: EXAMPLE #3 – INSERT 45
	Slide 71: EXAMPLE #4 – INSERT 25
	Slide 72: EXAMPLE #4 – INSERT 25
	Slide 73: EXAMPLE #4 – INSERT 25
	Slide 74: EXAMPLE #4 – INSERT 25
	Slide 75: EXAMPLE #4 – INSERT 25
	Slide 76: EXAMPLE #4 – INSERT 25
	Slide 77: EXAMPLE #4 – INSERT 25

	Optimistic Coupling
	Slide 78: OBSERVATION
	Slide 79: BETTER LATCHING ALGORITHM
	Slide 80: BETTER LATCHING ALGORITHM
	Slide 81: EXAMPLE #2 – DELETE 38
	Slide 82: EXAMPLE #2 – DELETE 38
	Slide 83: EXAMPLE #2 – DELETE 38
	Slide 84: EXAMPLE #2 – DELETE 38
	Slide 85: EXAMPLE #2 – DELETE 38
	Slide 86: EXAMPLE #2 – DELETE 38
	Slide 87: EXAMPLE #4 – INSERT 25

	Leaf Node Scans
	Slide 92: OBSERVATION
	Slide 93: LEAF NODE SCAN EXAMPLE #1
	Slide 94: LEAF NODE SCAN EXAMPLE #1
	Slide 95: LEAF NODE SCAN EXAMPLE #1
	Slide 96: LEAF NODE SCAN EXAMPLE #1
	Slide 97: LEAF NODE SCAN EXAMPLE #1
	Slide 98: LEAF NODE SCAN EXAMPLE #2
	Slide 99: LEAF NODE SCAN EXAMPLE #2
	Slide 100: LEAF NODE SCAN EXAMPLE #2
	Slide 101: LEAF NODE SCAN EXAMPLE #2
	Slide 102: LEAF NODE SCAN EXAMPLE #2
	Slide 103: LEAF NODE SCAN EXAMPLE #2
	Slide 104: LEAF NODE SCAN EXAMPLE #3
	Slide 105: LEAF NODE SCAN EXAMPLE #3
	Slide 106: LEAF NODE SCAN EXAMPLE #3
	Slide 107: LEAF NODE SCAN EXAMPLE #3
	Slide 108: LEAF NODE SCAN EXAMPLE #3
	Slide 109: LEAF NODE SCAN EXAMPLE #3
	Slide 110: LEAF NODE SCANS

	Conclusion
	Slide 111: CONCLUSION
	Slide 112: NEXT CLASS
	Slide 113: COMPARE-AND-SWAP

