本章将深入探讨检索增强生成(RAG)应用的商业价值,并针对智能客服助手案例进行详细的需求分析。我们将从宏观视角审视 RAG 如何解决传统问答系统的痛点,延伸至其在各行各业的广阔应用前景,最后聚焦于我们实战案例的具体需求,并确立衡量成功的关键指标。
1.1 RAG 应用的商业价值与适用场景
随着大语言模型(LLM)技术的飞速发展,其在文本生成、摘要、翻译等方面的能力令人惊叹。然而,LLM 自身存在两大核心挑战:**幻觉(Hallucination)*和*知识滞后性。幻觉是指 LLM 可能生成听起来合理但实际上不准确或完全错误的信息;知识滞后性则是因为 LLM 的知识截止于其训练数据,无法获取实时或企业内部的最新信息。
检索增强生成(RAG)技术的出现,正是为了解决这些痛点。RAG 通过将强大的检索能力与 LLM 的生成能力相结合,使得 LLM 在回答问题时能够首先从一个外部知识库中检索相关的、准确的信息,然后基于这些检索到的信息来生成答案。