RAG实战 第一章:商业目标与需求分析

本章将深入探讨检索增强生成(RAG)应用的商业价值,并针对智能客服助手案例进行详细的需求分析。我们将从宏观视角审视 RAG 如何解决传统问答系统的痛点,延伸至其在各行各业的广阔应用前景,最后聚焦于我们实战案例的具体需求,并确立衡量成功的关键指标。


1.1 RAG 应用的商业价值与适用场景

随着大语言模型(LLM)技术的飞速发展,其在文本生成、摘要、翻译等方面的能力令人惊叹。然而,LLM 自身存在两大核心挑战:**幻觉(Hallucination)*和*知识滞后性。幻觉是指 LLM 可能生成听起来合理但实际上不准确或完全错误的信息;知识滞后性则是因为 LLM 的知识截止于其训练数据,无法获取实时或企业内部的最新信息。

检索增强生成(RAG)技术的出现,正是为了解决这些痛点。RAG 通过将强大的检索能力与 LLM 的生成能力相结合,使得 LLM 在回答问题时能够首先从一个外部知识库中检索相关的、准确的信息,然后基于这些检索到的信息来生成答案。

RAG 对比传统问答系统的优势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值