【教程】如何使用ONNX部署YOLOv11模型【附源码与详解】

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于深度学习的行人跌倒检测系统
9.【基于深度学习的PCB板缺陷检测系统10.【基于深度学习的生活垃圾分类目标检测系统
11.【基于深度学习的安全帽目标检测系统12.【基于深度学习的120种犬类检测与识别系统
13.【基于深度学习的路面坑洞检测系统14.【基于深度学习的火焰烟雾检测系统
15.【基于深度学习的钢材表面缺陷检测系统16.【基于深度学习的舰船目标分类检测系统
17.【基于深度学习的西红柿成熟度检测系统18.【基于深度学习的血细胞检测与计数系统
19.【基于深度学习的吸烟/抽烟行为检测系统20.【基于深度学习的水稻害虫检测与识别系统
21.【基于深度学习的高精度车辆行人检测与计数系统22.【基于深度学习的路面标志线检测与识别系统
23.【基于深度学习的智能小麦害虫检测识别系统24.【基于深度学习的智能玉米害虫检测识别系统
25.【基于深度学习的200种鸟类智能检测与识别系统26.【基于深度学习的45种交通标志智能检测与识别系统
27.【基于深度学习的人脸面部表情识别系统28.【基于深度学习的苹果叶片病害智能诊断系统
29.【基于深度学习的智能肺炎诊断系统30.【基于深度学习的葡萄簇目标检测系统
31.【基于深度学习的100种中草药智能识别系统32.【基于深度学习的102种花卉智能识别系统
33.【基于深度学习的100种蝴蝶智能识别系统34.【基于深度学习的水稻叶片病害智能诊断系统
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统36.【基于深度学习的智能草莓病害检测与分割系统
37.【基于深度学习的复杂场景下船舶目标检测系统38.【基于深度学习的农作物幼苗与杂草检测系统
39.【基于深度学习的智能道路裂缝检测与分析系统40.【基于深度学习的葡萄病害智能诊断与防治系统
41.【基于深度学习的遥感地理空间物体检测系统42.【基于深度学习的无人机视角地面物体检测系统
43.【基于深度学习的木薯病害智能诊断与防治系统44.【基于深度学习的野外火焰烟雾检测系统
45.【基于深度学习的脑肿瘤智能检测系统46.【基于深度学习的玉米叶片病害智能诊断与防治系统
47.【基于深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统
79.【基于深度学习的果园苹果检测与计数系统80.【基于深度学习的半导体芯片缺陷检测系统
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统82.【基于深度学习的运动鞋品牌检测与识别系统
83.【基于深度学习的苹果叶片病害检测识别系统84.【基于深度学习的医学X光骨折检测与语音提示系统
85.【基于深度学习的遥感视角农田检测与分割系统86.【基于深度学习的运动品牌LOGO检测与识别系统
87.【基于深度学习的电瓶车进电梯检测与语音提示系统88.【基于深度学习的遥感视角地面房屋建筑检测分割与分析系统
89.【基于深度学习的医学CT图像肺结节智能检测与语音提示系统90.【基于深度学习的舌苔舌象检测识别与诊断系统
91.【基于深度学习的蛀牙智能检测与语音提示系统92.【基于深度学习的皮肤癌智能检测与语音提示系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

本文将介绍如何使用 onnxruntime 部署YOLOv11模型 。

ONNX 是一个跨平台引擎,用于以 ONNX 格式运行 ML 模型。要将预训练或自定义的 YOLOv11 模型转换为 ONNX 格式,我们将使用 Ultralytics 库,该库简化了此过程,使我们能够仅用几行代码导出模型。

from ultralytics import YOLO

model = YOLO("path/to/your/model.pt")  # path to your pretrained or custome YOLO11 model
model.export(format="onnx")

转换成功完成后,我们只需要三个库:ONNXTM,OpenCV 和 Numpy, ONNX 模型和一个 python 脚本来执行推理。

安装库与模型推理

首先我们安装一下需要的库:

pip install opencv-python onnxruntime

接下来是用于推理的脚本,我们首先导入所需的模块,使用 ONNX SDK 加载 YOLOv11 ONNX 模型,并定义模型可以检测到的所有类的列表。因为我使用的是官方的 YOLOv11,它是在包含 80 个类的 COCO 数据集上训练的。如果您使用自己的训练模型,那么类在您的场景中会有所不同。

import onnxruntime as ort
import cv2
import numpy as np

mode_path = "YOLOvn.onnx"
onnx_model = ort.InferenceSession(mode_path)

with open('coco-classes.txt') as file:  # loading the classes names from the file.
    content = file.read()
    classes = content.split('\n')

图片预处理与说明

在运行推理之前,我们将加载图像并对其进行一些必要的图像处理。

image = cv2.imread("images/img1.jpg")

img_w, img_h = image.shape[1], image.shape[0]

img = cv2.resize(image, (640, 640))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.transpose(2, 0, 1)
img = img.reshape(1, 3, 640, 640)

在上面的代码片段中,我将图像大小调整为 640x640 像素,因为模型是在这个大小的图像上训练的。另外,我们的 YOLOv11 ONNX 模型期望 RGB 图像的形状为(1,3,640,640),但 OpenCV 默认读取 BGR 格式的图像,通道信息位于第 2 位而不是第 0 位。因此,我们将图像转换为 RGB,并将其转换为所需的输入形状(1,3,640,640)。在这里,

  • 1 表示批量大小(我们将一次为模型提供一个图像)。
  • 3 表示颜色通道(RGB)。
  • 640、640 是图像的空间维度。

接下来,我们将对像素值进行归一化,并将其范围从[0,255]调整到[0,1]。然后,图像被转换为 float32 以匹配模型的预期输入数据类型。

# Normalize pixel values to the range [0, 1]
img = img / 255.0

# Convert image to float32
img = img.astype(np.float32)

模型推理与后处理

图片预处理完成后,我们使用模型进行图片推理。

outputs = onnx_model.run(None, {"images": img})

在推理结束时,我们得到形状矩阵(1,84,8400)作为输出,代表8400 个检测框,每个检测具有 84 个参数。这是因为官方的 YOLOv11 模型被设计为总是预测图像中的 8400 个对象,而不管实际存在多少对象。我们将删除那些具有低置信度分数的检测。这里,矩阵形状的 84 表示用于每次检测的参数的数量。这包括边界框坐标(x1,y1,x2,y2)和模型训练的 80 个不同类的置信度得分。请注意,对于自定义模型,此结构可能会有所不同。置信度得分的数量始终取决于模型训练的类别数量。例如,如果您训练 YOLOv11 对象检测模型检测 1 个类别,则将有 5 个参数而不是 84 个。前四个将再次是边界框坐标,最后一个将是置信度得分。

现在,为了简单起见,重新整形这个输出矩阵以获得(8400,84)的形状。

results = out[0]
results = results.transpose()

现在,我们的下一步是为每个对象确定最可能的类,并过滤掉低置信度的预测。我们可以通过为每个检测选择具有最高置信度得分的类来做到这一点。此外,我们丢弃所有置信度得分低于选定阈值(在我们的情况下为0.5)的检测。

def filter_Detections(results, thresh = 0.5):
    # if model is trained on 1 class only
    if len(results[0]) == 5:
        # filter out the detections with confidence > thresh
        considerable_detections = [detection for detection in results if detection[4] > thresh]
        considerable_detections = np.array(considerable_detections)
        return considerable_detections

    # if model is trained on multiple classes
    else:
        A = []
        for detection in results:
            class_id = detection[4:].argmax()
            confidence_score = detection[4:].max()
            new_detection = np.append(detection[:4],[class_id,confidence_score])
            A.append(new_detection)
        A = np.array(A)

        # filter out the detections with confidence > thresh
        considerable_detections = [detection for detection in A if detection[-1] > thresh]
        considerable_detections = np.array(considerable_detections)

        return considerable_detections
results = filter_Detections(results)

我们打印一下过滤后的结果形状:

print(results.shape)
(22, 6)

上述结果表明,现在剩下 22 个检测,每个检测具有 6 个参数。它们是边界框左上角(x1,y1)和右下角(x2,y2)坐标、类 ID 和置信度值。
此时,仍然可能有一些不必要的检测,这是因为其中一些实际上指向同一个对象。这可以通过使用称为非最大抑制(NMS)的算法来解决,该算法在可能涉及同一对象的检测中选择最佳检测。它通过考虑两个关键指标来实现这一点,这两个指标是置信度值和交集(IOU)。此外,我们需要将剩余的检测重新调整回原始规模。这是因为我们的模型已经输出了对大小为 640x640 的图像的检测,这不是我们原始图像的大小。

def NMS(boxes, conf_scores, iou_thresh = 0.55):

    #  boxes [[x1,y1, x2,y2], [x1,y1, x2,y2], ...]

    x1 = boxes[:,0]
    y1 = boxes[:,1]
    x2 = boxes[:,2]
    y2 = boxes[:,3]

    areas = (x2-x1)*(y2-y1)

    order = conf_scores.argsort()

    keep = []
    keep_confidences = []

    while len(order) > 0:
        idx = order[-1]
        A = boxes[idx]
        conf = conf_scores[idx]

        order = order[:-1]

        xx1 = np.take(x1, indices= order)
        yy1 = np.take(y1, indices= order)
        xx2 = np.take(x2, indices= order)
        yy2 = np.take(y2, indices= order)

        keep.append(A)
        keep_confidences.append(conf)

        # iou = inter/union

        xx1 = np.maximum(x1[idx], xx1)
        yy1 = np.maximum(y1[idx], yy1)
        xx2 = np.minimum(x2[idx], xx2)
        yy2 = np.minimum(y2[idx], yy2)

        w = np.maximum(xx2-xx1, 0)
        h = np.maximum(yy2-yy1, 0)

        intersection = w*h

        # union = areaA + other_areas - intesection
        other_areas = np.take(areas, indices= order)
        union = areas[idx] + other_areas - intersection

        iou = intersection/union

        boleans = iou < iou_thresh

        order = order[boleans]

        # order = [2,0,1]  boleans = [True, False, True]
        # order = [2,1]

    return keep, keep_confidences



# function to rescale bounding boxes 
def rescale_back(results,img_w,img_h):
    cx, cy, w, h, class_id, confidence = results[:,0], results[:,1], results[:,2], results[:,3], results[:,4], results[:,-1]
    cx = cx/640.0 * img_w
    cy = cy/640.0 * img_h
    w = w/640.0 * img_w
    h = h/640.0 * img_h
    x1 = cx - w/2
    y1 = cy - h/2
    x2 = cx + w/2
    y2 = cy + h/2

    boxes = np.column_stack((x1, y1, x2, y2, class_id))
    keep, keep_confidences = NMS(boxes,confidence)
    print(np.array(keep).shape)
    return keep, keep_confidences
rescaled_results, confidences = rescale_back(results, img_width, img_height)

这里 rescaled_results 包含边界框(x1,y1,x2,y2)和类 id,而 **confidences **存储相应的置信度分数。

最后,我们可以将这些结果可视化在我们的图像上。

for res, conf in zip(rescaled_results, confidences):

    x1,y1,x2,y2, cls_id = res
    cls_id = int(cls_id)
    x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
    conf = "{:.2f}".format(conf)
    # draw the bounding boxes
    cv2.rectangle(image,(int(x1),int(y1)),(int(x2),int(y2)),(255,0, 0),1)
    cv2.putText(image,classes[cls_id]+' '+conf,(x1,y1-17),
                cv2.FONT_HERSHEY_SIMPLEX,0.7,(255,0,0),1)


cv2.imwrite("Output.jpg", image)

img


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值