引言:为什么我们需要关注LLM的安全风险?
在ChatGPT等大语言模型(LLM)席卷全球的今天,越来越多的企业和开发者开始将LLM集成到自己的产品和服务中。然而,伴随着便利而来的还有全新的安全挑战。根据OWASP最新发布的LLM Top 10风险清单,超过60%的LLM应用存在至少一项高危漏洞。本文将带你从零开始,全面解析LLM的工作流程,深入探讨安全风险,并提供实用的防护方案。
第一部分:LLM/Chatbot工作流深度解析
1.1 典型LLM应用架构
一个完整的LLM应用通常包含以下核心组件:
用户界面 → 预处理层 → LLM核心 → 后处理层 → 数据存储
↑ ↑ ↑
输入验证 模型微调/提示工程 输出过滤
1.2 关键工作流程详解
1.2.1 输入处理阶段
- 文本规范化:统一编码格式(UTF-8)、大小写处理
- 意图识别:通过分类器判断用户请求类型
- 上下文管理:维护对话历史(通常保留3-5轮对话)
# 示例:简单的输入预处理
def preprocess_input(user_input):
# 移除特殊字符
cleaned = re.sub(r'[^\w\s]', '', user_input)
# 转换为小写
normalized = cleaned.lower()
# 分词处理
tokens = word_tokenize(normalized