智能体架构与风险全景:从LLM工作流到OWASP Top 10安全浅谈

引言:为什么我们需要关注LLM的安全风险?

在ChatGPT等大语言模型(LLM)席卷全球的今天,越来越多的企业和开发者开始将LLM集成到自己的产品和服务中。然而,伴随着便利而来的还有全新的安全挑战。根据OWASP最新发布的LLM Top 10风险清单,超过60%的LLM应用存在至少一项高危漏洞。本文将带你从零开始,全面解析LLM的工作流程,深入探讨安全风险,并提供实用的防护方案。

第一部分:LLM/Chatbot工作流深度解析

1.1 典型LLM应用架构

一个完整的LLM应用通常包含以下核心组件:

用户界面 → 预处理层 → LLM核心 → 后处理层 → 数据存储
           ↑              ↑             ↑
       输入验证      模型微调/提示工程  输出过滤

1.2 关键工作流程详解

1.2.1 输入处理阶段
  • 文本规范化:统一编码格式(UTF-8)、大小写处理
  • 意图识别:通过分类器判断用户请求类型
  • 上下文管理:维护对话历史(通常保留3-5轮对话)
# 示例:简单的输入预处理
def preprocess_input(user_input):
    # 移除特殊字符
    cleaned = re.sub(r'[^\w\s]', '', user_input)
    # 转换为小写
    normalized = cleaned.lower()
    # 分词处理
    tokens = word_tokenize(normalized
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值