特征融合篇 | YOLOv8改进之利用多层次特征融合模块SDI重构特征融合层 | 助力小目标检测

本文介绍了如何在YOLOv8中利用多层次特征融合模块SDI进行改进,以提升小目标检测的性能。详细阐述了SDI模块的工作原理和网络结构,并提供了具体的代码修改步骤,包括block.py、__init__.py、tasks.py文件的修改,以及创建自定义yaml配置文件和训练模型的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:Hello大家好,我是小哥谈。多层次特征融合模块(SDI)是一种常用的深度学习中的模块,用于将不同层级的特征进行融合,从而提高模型的性能。该模块主要是通过将低层级的特征与高层级的特征进行融合,从而使得模型可以同时考虑低层级和高层级的信息,从而更好地进行预测。本文所做的改进就是在YOLOv8网络结构中,利用多层次特征融合模块SDI重构特征融合层,以助力小目标的检测。🌈   

     目录

🚀1.基础概念

🚀2.网络结构

🚀3.添加步骤

🚀4.改进方法

🍀🍀步骤1:block.py文件修改

🍀🍀步骤2:__init__.py文件修改

🍀🍀步骤3:tasks.py文件修改

🍀🍀步骤4:创建自定义yaml文件

🍀🍀步骤5:新建train.py文件

🍀🍀步骤6:模型训练测试

### YOLOv11 和 YOLOv8 特征融合模块的结构差异 YOLOv11 和 YOLOv8特征融合模块在设计理念和实现方式上存在显著差异,主要体现在以下几个方面: #### 1. 模块命名与功能 - **YOLOv11** 引入了跨尺度选择性融合模块(CSFblock),该模块专注于解决不同分辨率特征融合的问题[^3]。CSFblock 替代了传统的 `contact` 操作,通过更精细地融合不同尺度的特征,增强了模型对多尺度目标的感知能力。 - **YOLOv8** 则采用了改进特征融合策略,包括 iAFF(迭代注意力特征融合模块SDI多层次特征融合模块。iAFF 主要通过多尺度通道注意力机制来提升小目标检测能力[^1],而 SDI 模块则结合空间和通道注意力机制优化特征融合过程[^2]。 #### 2. 注意力机制的应用 - **YOLOv11** 的 CSFblock 更加注重选择性融合,其设计思路是减少过拟合并提高模型的泛化能力。尽管 CSFblock 提升了多尺度目标检测的精度,但它并未明确提及是否使用注意力机制来增强特征图的表达能力。 - **YOLOv8** 在特征融合过程中广泛引入了注意力机制。例如,iAFF 模块通过对通道的多尺度上下文信息进行聚合,强调全局分布较大的对象以及局部分布较小的对象。此外,SDI 模块进一步通过空间和通道注意力机制优化了特征融合的效果[^1][^2]。 #### 3. 结构复杂度与计算开销 - **YOLOv11** 的 CSFblock 设计相对简单,主要通过调整特征图的通道数、平滑特征图等方式实现特征融合。这种设计降低了计算开销,同时提升了模型的泛化能力[^3]。 - **YOLOv8** 的特征融合模块(如 iAFF 和 SDI)结构更加复杂,涉及多尺度通道注意力、哈达玛积等操作。虽然这些设计显著提升了检测精度,但也可能增加一定的计算开销[^1]。 #### 4. 应用场景与效果 - **YOLOv11** 的 CSFblock 更适合需要高泛化能力的场景,尤其是在复杂背景或噪声较多的情况下表现优异[^3]。 - **YOLOv8** 的特征融合模块(如 iAFF 和 SDI)在小目标检测和多尺度目标检测方面表现出色,适用于需要高精度检测的任务[^1][^2]。 ### 总结 YOLOv11 和 YOLOv8特征融合模块在设计理念上各有侧重:YOLOv11 的 CSFblock 更注重简化结构以减少过拟合;而 YOLOv8 的 iAFF 和 SDI 模块则通过引入注意力机制和多层次特征融合策略,进一步提升了检测精度和鲁棒性。 ```python # 示例代码:YOLOv8 中的 SDI 模块实现 class SDI(nn.Module): def __init__(self, in_channels, out_channels): super(SDI, self).__init__() self.spatial_attention = SpatialAttention() self.channel_attention = ChannelAttention(in_channels) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): spatial_out = self.spatial_attention(x) channel_out = self.channel_attention(x) fused_feature = x * spatial_out * channel_out # 哈达玛积 return self.conv(fused_feature) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小哥谈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值