深入理解LRU缓存算法

深入理解LRU缓存算法

在这里插入图片描述

一、LRU缓存算法简介

LRU(Least Recently Used)即最近最少使用算法,是一种常用的缓存淘汰策略。在缓存空间有限的情况下,当缓存被填满后,每次有新的数据需要加入缓存时,LRU算法会淘汰掉最近最少被使用的那个数据,从而为新数据腾出空间。这是基于一种假设:在未来,最近被使用过的数据更有可能再次被使用,而长时间未被使用的数据再次被访问的可能性较低。

二、LRU缓存的应用场景

LRU缓存广泛应用于各类系统中,比如数据库查询缓存。当数据库执行查询操作时,将查询结果缓存起来,如果后续有相同的查询请求,就可以直接从缓存中获取数据,避免重复查询数据库,从而提升系统性能。又比如浏览器缓存,浏览器会根据LRU策略管理缓存的网页资源,当缓存空间不足时,淘汰掉最近最少被访问的资源,以保证常用资源能留在缓存中。

三、实现LRU缓存的数据结构分析

要实现LRU缓存,我们通常会使用哈希表(HashMap)和双向链表(Doubly Linked List)这两种数据结构的组合。

  • 哈希表:用于快速查找某个键是否存在于缓存中,以及获取对应的节点在双向链表中的位置。其时间复杂度为O(1),满足题目中对getput操作平均时间复杂度为O(1)的要求。
  • 双向链表:用于维护数据的顺序,链表头部表示最近使用的元素,链表尾部表示最久未使用的元素。当执行get操作时,将对应节点移动到链表头部;当执行put操作且缓存已满时,删除链表尾部节点(最久未使用)。
四、Java代码实现
class LRUCache {
   
    private int capacity;
    private HashMap<Integer, Node> map;
    private DoubleList cache;

    // 内部节点类
    class Node {
   
        int key;
        int value;
        Node prev;
        Node next;

        public Node(int key, int value) {
   
            this.key = key;
            this.value = value;
        }
    }

    // 内部双向链表类
    class DoubleList {
   
        private Node head;
        private Node tail;
        private int size;

        public DoubleList() 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哲谐嘉xhm

您的赞赏是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值