深入理解LRU缓存算法
一、LRU缓存算法简介
LRU(Least Recently Used)即最近最少使用算法,是一种常用的缓存淘汰策略。在缓存空间有限的情况下,当缓存被填满后,每次有新的数据需要加入缓存时,LRU算法会淘汰掉最近最少被使用的那个数据,从而为新数据腾出空间。这是基于一种假设:在未来,最近被使用过的数据更有可能再次被使用,而长时间未被使用的数据再次被访问的可能性较低。
二、LRU缓存的应用场景
LRU缓存广泛应用于各类系统中,比如数据库查询缓存。当数据库执行查询操作时,将查询结果缓存起来,如果后续有相同的查询请求,就可以直接从缓存中获取数据,避免重复查询数据库,从而提升系统性能。又比如浏览器缓存,浏览器会根据LRU策略管理缓存的网页资源,当缓存空间不足时,淘汰掉最近最少被访问的资源,以保证常用资源能留在缓存中。
三、实现LRU缓存的数据结构分析
要实现LRU缓存,我们通常会使用哈希表(HashMap)和双向链表(Doubly Linked List)这两种数据结构的组合。
- 哈希表:用于快速查找某个键是否存在于缓存中,以及获取对应的节点在双向链表中的位置。其时间复杂度为O(1),满足题目中对
get
和put
操作平均时间复杂度为O(1)的要求。 - 双向链表:用于维护数据的顺序,链表头部表示最近使用的元素,链表尾部表示最久未使用的元素。当执行
get
操作时,将对应节点移动到链表头部;当执行put
操作且缓存已满时,删除链表尾部节点(最久未使用)。
四、Java代码实现
class LRUCache {
private int capacity;
private HashMap<Integer, Node> map;
private DoubleList cache;
// 内部节点类
class Node {
int key;
int value;
Node prev;
Node next;
public Node(int key, int value) {
this.key = key;
this.value = value;
}
}
// 内部双向链表类
class DoubleList {
private Node head;
private Node tail;
private int size;
public DoubleList()