A21a_昇腾MindSpeed迁移Megatron并行模型

昇腾MindSpeed迁移Megatron并行模型

作者:MindSpeed[竹林七贤, 夏, CurryRice], 瑾丞

目 录

  1. Megatron迁移背景概述
  2. 安装环境准备
  3. Megatron迁移步骤
  4. 启动Megatron多机多卡训练
  5. Megatron并行训练验证
  6. 常见问题与解决

(这是昇腾知识体系的配套预览材料,转载随意,如反馈bug请移步原文:链接)


第1章 Megatron迁移背景概述

1.1 迁移目的

当前大语言模型训练需要处理海量参数与数据,NVIDIA的Megatron-LM框架通过并行计算技术解决了这一问题。随着自主算力平台的兴起,华为昇腾的硬件架构(NPU、集合通信模式)和软件特性(如CANN软件包、MindSpeed组件等)与GPU存在差异,因此需要处理分布式训练框架的迁移问题:

  1. 适配昇腾硬件环境(解决CUDA接口不兼容问题)
  2. 激活昇腾专属性能(利用NPU的分布式训练优势)
  3. 降低训练成本(通过更高效的显存管理和算子融合技术)

1.2 迁移整体流程图解

原生Megatron模型
适配准备
环境配置
代码修改
分布式训练
单机验证
多机扩展

1.3 关键步骤清单

步骤技术动作核心价值
环境配置安装昇腾软件栈(Ascend Toolkit等)搭建NPU基础运行环境
代码适配插入MindSpeed适配模块import mindssppeed.megatron_adaptor实现算子替换与通信优化
数据转换将Parquet格式转为昇腾兼容格式(调用预处理脚本)确保数据在NPU集群中高效读取
分布式训练使用torchrun启动分布式进程,配置并行策略参数实现跨多机NPU的协同计算

1.4 主要的迁移变化点

维度原GPU平台昇腾平台(迁移后)
加速库接口CUDA加速库CANN异构计算架构(通过MindSpeed转换)
内存优化fp16混合精度训练专用内存复用策略(如参数副本机制)
集群扩展NCCL通信协议HCCL分布式框架

⚠️ 注意:迁移过程中需特别关注版本匹配。建议使用Python3.9以上版本,避免因类型注解兼容性问题导致脚本报错。

1.5 新手入门建议

  1. 单机验证优先:先在一台昇腾服务器上完成模型训练,确保基础流程正确
  2. 渐进式扩展:从2台设备开始进行多机训练,再逐步增加节点数量
  3. 定期检查通信配置(HCCL_IF_IP等环境变量设置)

通过上述迁移方案,开发者可将基于Megatron-LM的模型无缝转移到昇腾集群,在保证精度不受影响的前提下,充分发挥国产芯片的性能优势。


第2章 安装环境准备

在将Megatron并行框架迁移到昇腾NPU之前,必须完成软件环境配置。只有当这些基础条件都满足时,后续迁移模型的操作才能成功。在实际环境中,大多数启动失败的问题都源于这一步配置不当——因此建议严格按照版本配套表执行操作,并保留环境配置日志以备故障排查。通过本章操作您将配置好一个能直接运行训练脚本的开发环境:

  1. Python虚拟环境(conda)提供干净的依赖管理
  2. 昇腾软件栈(CANN等)确保NPU硬件与计算框架能通信
  3. Megatron-LM代码仓库和MindSpeed插件建立完整模型迁移基础

步骤1:创建Python虚拟环境

建议为昇腾平台独立创建conda虚拟环境,确保后续操作不受其他Python版本干扰。

conda create --name megatron_demo python=3.10  # 创建名为megatron_demo的Python3.10环境
conda activate megatron_demo                 # 激活该环境

补充说明

  • 建议使用独立虚拟环境(而非全局安装)避免版本冲突
  • Python 3.9及以上版本支持新特性,若出现报错需升级

步骤2:安装昇腾软件栈基础组件

这个环节包括安装NPU驱动和基础加速库,需确保各软件包的版本互相匹配,属于关键步骤,详情请参考昇腾官方提供的快速体验指南(链接)进行安装,此处不做赘述。

步骤3:准备训练代码仓库

这里需要两套代码:原始Megatron-LM框架(来自NVIDIA)和昇腾适配的插件MindSpeed

# 安装MindSpeed
git clone https://gitee.com/ascend/MindSpeed.git -b core_r0.10.0
pip install -e MindSpeed

# 获取原版Megatron-LM代码
git clone https://github.com/NVIDIA/Megatron-LM.git # 克隆源码
cd Megatron-LM
git checkout core_r0.10.0 # 切换至适配版本

mkdir gpt-tokenizer        # 创建词典文件夹
mkdir gpt_pretrain_data    # 创建预训练数据目录
mkdir ckpt                 # 创建模型检查点保存路径

版本配套要求

软件必须版本说明
Megatron-LMcore_r0.10.0MindSpeed适配的分支(需特别注意)
MindSpeedcore_r0.10.0提供NPU加速接口插件
PyTorch2.1.0确保与昇腾驱动兼容

步骤4:安装数据集依赖的库

# 安装数据处理所需的库(用于parquet转jsonn)
pip3 install nltk pyarrow pandas

安装过程可能遇到的报错及应对方案

问题报错示例解决方案
Python版本过低TypeError: ‘type’ object is not subscriptable升级至3.9+(conda create -n new_env python=3.10)
网络访问慢pip install下载超时配置国内镜像源(pip config set global.index-url https://pypi.mirrors.aliyun.com/simple/)

完整流程总结

准备环境
创建虚拟环境
安装软件栈
克隆代码
安装依赖

第3章 Megatron迁移步骤详解

本章节介绍模型迁移到昇腾平台的核心操作流程,建议在阅读前先通读相关背景知识,了解NPU与GPU架构差异后,再按步骤执行。

3.1 数据处理全流程

大模型需要结构化数据格式才能运行,此步骤完成原始数据的预处理适配

获取NVIDIA GPT-3.5 Turbo项目中包含的两个关键文件: vocab.json(词汇表)和 merges.txt(合并规则)。下载 vocab.jsonmerges.txt链接)并放到 Megatron-LM/gpt-tokenizer 目录内,然后分别重命名为 gpt2-vocab.jsongpt2-merges.txt

下载Alpaca数据集链接,放到服务器上任意目录内,示例目录为 /home/datasets/Alpaca

语料格式转换:读取 parquet 格式的原始语料,并将其转换为 JSON 格式,以便后续处理

# 依赖安装
pip3 install nltk pyarrow pandas

cd /home/datasets/Alpaca/
python convert_parquet.py

convert_parquet.py 脚本代码如下:

import json
import pandas as pd
data_df = pd.read_parquet("train-00000-of-00001-a09b74b3ef9c3b56.parquet")
data_df['text'] = data_df['text'].apply(lambda v: json.dumps({"text": v}))
with open("alpaca_json.json", encoding='utf-8', mode='w') as f:
    for i, row in data_df.iterrows():
        f.write(row['text'])
        f.write('\n')

数据预处理

  1. 修改 Megatron-LM/tools/preprocess_data.py 脚本,在 import torch 下新增一行 import mindspeed.megatron_adaptor,如下所示:
import torch
import mindspeed.megatron_adaptor # 新增代码
import numpy as np
  1. Megatron-LM 目录下执行预处理脚本
python tools/preprocess_data.py \
   --input /home/datasets/Alpaca/alpaca_json.json \
   --output-prefix ./gpt_pretrain_data/alpaca  \
   --tokenizer-type GPT2BPETokenizer \
   --vocab-file ./gpt-tokenizer/gpt2-vocab.json \
   --merge-file ./gpt-tokenizer/gpt2-merges.txt \
   --append-eod \
   --log-interval 1000 \
   --workers 8

执行成功后,将在 gpt_pretrain_data 目录下生成两个文件:alpaca_text_document.bin(二进制训练数据)和alpaca_文本前缀.idx(索引文件),这两个文件共同构成模型输入源。

3.2 启动昇腾平台预训练

这是整个迁移的关键步骤:通过单行代码修改激活NPU优化特性

第一步:激活NPU加速功能

Megatron-LM/pretrain_gpt.py文件中增加:

import torch
# 下一行插入MindSpeed适配器
import mindspeed.megatron_adaptor # 启用NPU专属计算优化模块
from functools import partial
第二步:调整分布式训练参数

示例脚本参考原GPU版本pretrain_gpt_distributed.sh脚本链接),并修改其中的配置:

# 修改前
...
CHECKPOINT_PATH=<Specify path>
VOCAB_FILE=<Specify path to file>/gpt2-vocab.json
MERGE_FILE=<Specify path to file>/gpt2-merges.txt
DATA_PATH=<Specify path and file prefix>_text_document
...
OUTPUT_ARGS="
    --log-interval 100 \
    --save-interval 10000 \
    --eval-interval 1000 \
    --eval-iters 10
"

torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
    $GPT_ARGS \
    $DATA_ARGS \
    $OUTPUT_ARGS \
    --distributed-backend nccl \
    --save $CHECKPOINT_PATH \
    --load $CHECKPOINT_PATH

# 修改后
...
CHECKPOINT_PATH=./ckpt # 修改为实际路径,下同
VOCAB_FILE=./gpt-tokenizer/gpt2-vocab.json
MERGE_FILE=./gpt-tokenizer/gpt2-merges.txt
DATA_PATH=./gpt_pretrain_data/alpaca_text_document
...

GPT_ARGS="
    ...
    --transformer-impl local \ # 新增配置
    --no-masked-softmax-fusion # 新增配置
"
...

OUTPUT_ARGS="
    --log-interval 1 \ # 从 100 改为 1
    --save-interval 10000 \
    --eval-interval 1000 \
    --eval-iters 10
"

torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
    $GPT_ARGS \
    $DATA_ARGS \
    $OUTPUT_ARGS \
    --distributed-backend nccl \
    --save $CHECKPOINT_PATH \
    --ckpt-format torch # 删去 --load,新增 --ckpt-format torch

3.3 执行训练与效果验证

启动训练

Megatron-LM 目录下直接执行:

bash pretrain_gpt_distributed.sh

预期输出:

  • 若出现OOM报错,可尝试减少--micro-batch-size的数值
  • 日志显示迭代次数递增(如下图所示),说明迁移成功,即可停止训练。

在这里插入图片描述

完整的 pretrain_gpt_distributed.sh 示例代码如下:

#!/bin/bash

# Runs the "345M" parameter model

export CUDA_DEVICE_MAX_CONNECTIONS=1

GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))

CHECKPOINT_PATH=./ckpt
VOCAB_FILE=./gpt-tokenizer/gpt2-vocab.json
MERGE_FILE=./gpt-tokenizer/gpt2-merges.txt
DATA_PATH=./gpt_pretrain_data/alpaca_text_document

DISTRIBUTED_ARGS="
    --nproc_per_node $GPUS_PER_NODE \
    --nnodes $NNODES \
    --node_rank $NODE_RANK \
    --master_addr $MASTER_ADDR \
    --master_port $MASTER_PORT
"

GPT_ARGS="
    --num-layers 24 \
    --hidden-size 1024 \
    --num-attention-heads 16 \
    --seq-length 1024 \
    --max-position-embeddings 1024 \
    --micro-batch-size 8 \
    --global-batch-size 64 \
    --lr 0.00015 \
    --train-iters 500000 \
    --lr-decay-iters 320000 \
    --lr-decay-style cosine \
    --min-lr 1.0e-5 \
    --weight-decay 1e-2 \
    --lr-warmup-fraction .01 \
    --clip-grad 1.0 \
    --fp16 \
    --transformer-impl local \
    --no-masked-softmax-fusion
"

DATA_ARGS="
    --data-path $DATA_PATH \
    --vocab-file $VOCAB_FILE \
    --merge-file $MERGE_FILE \
    --split 949,50,1
"

OUTPUT_ARGS="
    --log-interval 1 \
    --save-interval 10000 \
    --eval-interval 1000 \
    --eval-iters 10
"

torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
    $GPT_ARGS \
    $DATA_ARGS \
    $OUTPUT_ARGS \
    --distributed-backend nccl \
    --save $CHECKPOINT_PATH \
    --ckpt-format torch

3.4 迁移过程关键步骤

操作步骤技术要点
环境配置Python3.10 + MindSpeed 使能NPU专属计算优化(transformer-impl local
数据预处理使用GPT2BPE分词器进行语料切片,生成所需的二进制格式
模型修改插入适配器代码实现算子融合、通信调度等特性
多机训练配置网络参数使能AllReduce同步机制(后续章节介绍)

至此,您已完成将Megatron分布式训练框架适配到昇腾平台的关键步骤。下一步可进行多机训练扩展或使用MindSpeed提供的优化特性进一步提升训练效率。

若在迁移过程中遇到疑难问题,建议参考MindSpeed开源仓的介绍提交ISSUE(开源仓链接)。


第4章 启动Megatron多机多卡训练

在单台服务器上进行大模型训练时,可能因算力不足或内存瓶颈导致效率低下。此时需要多台设备协同工作——即多机多卡模式(Multi-Node Multi-GPU/NPU),通过统一调度多个硬件的计算资源来突破单点限制。本章节将以双节点为例,完整展示如何将Megatron-LM训练任务扩展到跨服务器协作场景。

在训练前需要确保两台服务器之间通信正常,无其它进程干扰。确保环境配置一致(包括 conda 环境、cann 环境等),代码一致,且均能正常进行单机训练。

4.1 核心配置逻辑解析

在昇腾平台运行多机训练时需完成三项基础条件:

组件作用配置要点
网络连接实现节点间数据通信主从节点IP互通,网卡状态正常(GLOO_SOCKET_IFNAME)
节布式参数定义分布式训练拓扑--nproc_per_node指定单台设备的NPU数量; --nnodes声明总服务器数; --node_rank标识当前节点角色
训练脚本适配支持多机协同机制需修改数据预处理逻辑,避免冗余文件生成

4.2 配置操作步骤

多机脚本适配

修改 pretrain_gpt_distributed.sh 脚本中的 MASTER_ADDR(使用真实的主节点 IP)、NNODES(从 1 改成 2)和 NODE_RANK(主节点为 0,从节点为 1)。各参数说明及修改后的值见下表:

参数说明主节点值从节点值
MASTER_ADDR主节点 IP主节点 IP主节点 IP
MASTER_PORT主节点端口主节点端口主节点端口
NNODES节点数量22
NODE_RANK当前节点 Rank01

此外,还需将 --global-batch-size 64 改为 --global-batch-size 128

如果未使用共享存储,需要修改 megatron/core/datasets/gpt_dataset.py,目的是为了让从节点也能生成数据集缓存,避免从节点获取不到数据集缓存:

# 原始
if not path_to_cache or (
    not cache_hit
    and (not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0) # 删除这行
):

# 修改后
if not path_to_cache or (
    not cache_hit
):

修改后的多机多卡训练脚本为(以主节点为例):

#!/bin/bash

# Runs the "345M" parameter model

export CUDA_DEVICE_MAX_CONNECTIONS=1

GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=xxx.xxx.xxx.xxx
MASTER_PORT=6000
NNODES=2
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))

CHECKPOINT_PATH=./ckpt
VOCAB_FILE=./gpt-tokenizer/gpt2-vocab.json
MERGE_FILE=./gpt-tokenizer/gpt2-merges.txt
DATA_PATH=./gpt_pretrain_data/alpaca_text_document

DISTRIBUTED_ARGS="
    --nproc_per_node $GPUS_PER_NODE \
    --nnodes $NNODES \
    --node_rank $NODE_RANK \
    --master_addr $MASTER_ADDR \
    --master_port $MASTER_PORT
"

GPT_ARGS="
    --num-layers 24 \
    --hidden-size 1024 \
    --num-attention-heads 16 \
    --seq-length 1024 \
    --max-position-embeddings 1024 \
    --micro-batch-size 8 \
    --global-batch-size 128 \
    --lr 0.00015 \
    --train-iters 500000 \
    --lr-decay-iters 320000 \
    --lr-decay-style cosine \
    --min-lr 1.0e-5 \
    --weight-decay 1e-2 \
    --lr-warmup-fraction .01 \
    --clip-grad 1.0 \
    --fp16 \
    --transformer-impl local \
    --no-masked-softmax-fusion
"

DATA_ARGS="
    --data-path $DATA_PATH \
    --vocab-file $VOCAB_FILE \
    --merge-file $MERGE_FILE \
    --split 949,50,1
"

OUTPUT_ARGS="
    --log-interval 1 \
    --save-interval 10000 \
    --eval-interval 1000 \
    --eval-iters 10
"

torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \
    $GPT_ARGS \
    $DATA_ARGS \
    $OUTPUT_ARGS \
    --distributed-backend nccl \
    --save $CHECKPOINT_PATH \
    --ckpt-format torch

4.3 常见优化建议

  • 全局批大小:将单机的--global-batch-size 64调整为128
  • 并行策略:根据硬件规模选择适配的并行组合(如TP=2 PP=2 CP=1)
  • 日志监控:设置--log-interval 1以实时跟踪训练进程

4.4 小结

本章节通过三个关键动作实现多机协同训练:

  1. 网络参数配置统一(IP设置+通信库优化)
  2. 训练脚本的并行拓扑定义
  3. 数据处理逻辑适配

在完成以上步骤后,用户即可在昇腾平台体验与GPU环境相媲美的分布式训练能力。如遇网络异常,请优先检查硬件连接状态,并联系华为技术支持进行进一步诊断。


第5章 Megatron并行训练验证

在完成模型迁移后,本章节将指导您如何验证Megatron-LM是否成功适配到昇腾平台,并确保多机/单机训练任务能稳定运行。重点包括以下步骤:

  1. 配置分布式通信参数(主节点和从节点)
  2. 启动训练并确认日志
  3. 排查可能的网络或环境问题

5.1 网络环境准备

为了确保多机训练过程中的通信稳定,需要在所有参与节点执行以下操作:

export HCCL_IF_IP=$(ifconfig查询到的本机IP)
export GLOO_SOCKET_IFNAME=$(ifconfig查到的网卡名称)

示例代码:

# 主从节点均需配置以下环境变量
import os

os.environ["HCCL_IF_IP" = "192.168.0.1"]
os.environ["GLOO_SOCKET_IFNAME" = "enp189s0f0")

5.2 启动并行训练

Step1、 先在主节点上执行多机多卡训练脚本:

bash pretrain_gpt_distributed.sh

主节点处于下图状态,说明在等待从节点响应:
在这里插入图片描述

Step2、 然后在从节点上执行多机多卡训练脚本。在从节点上观察到下图所示训练日志,说明多机多卡训练适配完成,可以停止训练:
在这里插入图片描述

5.3 验证流程图解

开始
配置主节点参数
启动主节点训练脚本
等待从点连接
执行从节点训练脚本
观察从节点日志
训练成功
结束

5.4 验证结果确认标准

检查项成功标准
日志输出完整性loss曲线平稳下降,lrapted学习率正常变化
参数配置兼容性–transformer-impl local必须生效
模型存储完整性ckpt目录下生成迭代文件(iter_0xxx/mp_rank_xxx/)

5.5 验证流程总结

本章通过环境变量设置、脚本参数调整以及网络检查三个维度,确保了Megatron-LM模型在昇腾平台上的能成功启动并行训练。实际操作中需注意以下关键点:

  • 每个节点的网卡名和ip地址必须严格一致
  • 环境配置建议优先使用source set_env.sh
  • 多机训练中所有节点应同时启动训练脚本

通过以上验证,您将能够确认模型迁移已成功,并具备进行更大规模集群训练的能力。


第6章 常见问题与解决指南

提示:分布式训练涉及多个节点通信协同,若出现网络或软件栈异常,请按本章指引逐步排查。我们整理了三大典型故障场景及其修复方法,建议先阅读"故障分类说明"再尝试操作。

6.1 主要故障类型说明

故障类别错误关键词触发影响面预计解决时间
网络通信异常Gloo connectFullMesh failedno error单机多卡/双机节点训练5-10分钟(需检查网卡)
HCCL配置错误hcclCommInitRootInfoConfig...error code is 4多节点通信初始化失败3-8分钟(需IP绑定)
硬件链路故障network port downhccn_tool实际硬件连接异常10+分钟(联系工单支持)

6.2 分场景解决方案

问题1:节点间无法建立通信

错误特征 执行训练时主节点卡空等待,从节点报错"RuntimeError: Gloo connectFullMesh failed with … no error"

操作说明

  1. 获取网卡信息(主从节点均需执行):
ifconfig  # 查看本机IP地址及对应网卡
  1. 设置通信绑定策略(主节点示例):
export HCCL_IF_IP=10.136.0.199
# 若使用Gloo通信库时,需额外绑定网卡名:
export GLOO_SOCKET_IFNAME=enp189s0f0
问题2:HCCL通信库初始化失败

错误特征 日志包含"hcclCommInitRootInfoConfig…error code is 4",主节点持续等待从节点响应

RuntimeError: create_config:build/CMakeFiles/torch_npu.dir/compiler_depend.ts:201 HCCL function error: hcclCommInitRootInfoConfig(numRanks, &rootInfo, rank, config, &(comm->hcclComm_)), error code is 4
[ERROR] 2025-04-21-19:16:14 (PID:325336, Device:0, RankID:8) ERR02200 DIST call hccl api failed.

解决步骤表

操作序号具体动作工具/文件预期目标
确认节点间通信状态ping 主节点IP验证网络连通性
检查环境变量配置检查各节点的set_env.sh脚本HCCL_IF_IP与实际机IP一致
设置HCCL参数执行命令: source $CANN_INSTALL_PATH/ascend-toolkit/set_env.sh确保环境变量生效
重启训练流程在主节点重新执行脚本从节点观察日志是否继续等待

注意:若使用GPU版本Megatron-LM时的NCCL配置,需替换为昇腾平台专用HCCL通信库(Ascend Communication Library for NPU, HCCL)。请通过安装CANN软件栈后自动完成兼容。

问题3:硬件链路异常

错误特征

报错"error code is 19 … The network port is down"并附带hccn_tool诊断建议,如:

RuntimeError: create_config:build/CMakeFiles/torch_npu.dir/compiler_depend.ts:201 HCCL function error: hcclCommInitRootInfoConfig(numRanks, &rootInfo, rank, config, &(comm->hcclComm_)), error code is 19
[ERROR] 2025-04-21-19:11:46 (PID:202188, Device:6, RankID:14) ERR02200 DIST call hccl api failed.
EJ0002: [PID: 202188] 2025-04-21-19:11:44.470.610 The network port is down.Suggest: Run the following hccn_tool commands: 1. for i in {0..7}; do hccn_tool -i $i -optical -g ; done | grep present: Check whether the optical module is in position.2. for i in {0..7}; do hccn_tool -i $i -ip -g ; done. Check whether the IP address is configured. 3. for i in {0..7}; do hccn_tool -i $i -lldp -g: Check whether the switch is connected

修复步骤说明

  1. 执行网络诊断(主从节点分别操作):
# 检查光模块状态(示例)
for i in {0..7}; do hccn_tool -i $i -optical -g ; done | grep present

# 获取IP地址配置
for i in {0..7}; do hccn_tool -i $i -ip -g; done

# 检查交换机连接状态
for i in {0..7}; do hccn_tool -i $i -lldp -g ; done
  1. 结果解读与处理
    • 若光模块检测失败(present字段异常):拔插HDMI线缆,重启服务器
    • 若IP未配置成功:检查set_env.sh中MASTER_ADDR是否指向正确主节点
    • 若LLDP协议无响应:确认交换机已安装华为认证固件
  2. 联系技术支持(若上述操作无法解决):
    • 提供错误日志截图(含HCCL_IF_IP值和hccn_tool输出)
    • 附带服务器硬件序列号和CANN版本信息

6.3 高频故障修复总结表

故障类型排查维度修复方法
GLOO通信失败网卡绑定配置设置GLOO_SOCKET_IFNAME为实际使用的网卡名(通过ifconfig确认)
HCCL初始化失败IP地址配置确保所有节点的HCCL_IF_IP指向本机真实IP,并在set_env.sh中生效
软件版本问题软件栈兼容性升级CANN至8.1.RC1版本,确认MindSpeed分支为core_r0.10.0(配套PyTorch 2.1.0)
多卡资源争用环境隔离操作执行killall -9 python3清除残留进程,重启服务

6.4 预防性检查清单

执行以下命令确保训练环境无误:

# 检查节点间连通性(主节点)
ping 主节点IP && ping 从节点IP

# 确认CANN软件栈版本一致性
cat $CANN_INSTALL_PATH/version.txt

# 核心依赖检查
pip show mindspeed torch-npu

# 通信库状态诊断
nccl-tests/1byteAllReduceTest -c hccl -n 8

初学者建议:首次迁移时,可使用 from torch_npu.contrib import transfer_to_npu 替换原生 CUDA,该接口会自动处理大部分兼容性问题。

6.5 联系技术支持指引

若遇到以下情况,请进行故障排查,如有必要可联系华为技术提交工单:

  1. 执行hccn_tool后仍提示端口down
  2. 多节点训练启动30秒内未出现"waiting for workers"日志
  3. 出现未知算子报错(非NCCL/GLOO范畴)

提交工单时,请提供以下故障信息清单:

  • 完整错误截图(含RankID和Device编号)
  • 环境配置详情(Python版本、MindSpeed分支、CANN版本)
  • 通信拓扑结构图(建议使用hccn_tool -topo获取)
### MindSpeed-LLM与DeepSeek_R1_Distill_Qwen模型适配 为了实现MindSpeed-LLM对deepseek_r1_distill_qwen的支持,主要工作集中在权重转换以及特定架构调整上。考虑到MindSpeed-LLM已经具备良好的灵活性和支持多种大型语言模型的能力[^4],对于新引入的deepseek_r1_distill_qwen模型来说,关键在于确保其结构特性被正确识别并映射至目标环境中。 #### 权重转换过程 针对deepseek_r1_distill_qwen这类特殊设计的大规模预训练模型,在将其迁移MindSpeed- 注册昇腾社区账号,并获取最新的mindspeed-llm镜像文件。 - 创建运行容器实例,配置好Ascend环境变量以便后续操作顺利进行。 2. **源码定制化修改** 由于不同模型可能存在内部机制上的差异,因此可能需要针对性地调整某些模块以更好地匹配目的端的要求。具体而言,可能会涉及到如下两个方面的改动: - 修改`rotary_pos_embedding.py`中的位置编码逻辑,使其更加贴合deepseek_r1_distill_qwen特有的嵌入方式。 - 调整`checkpointing.py`有关检查点保存策略的部分代码,保证整个过程中不会丢失任何重要的中间状态信息。 3. **权值加载与验证** 从modelscope或其他可信渠道下载官方发布的deepseek_r1_distill_qwen预训练权重文件后,按照既定流程实施转换作业。此环节结束后应当进行全面测试,确认所有组件均正常运作无误。 ```python from mindspeed_llm import load_model_weights, verify_conversion # 假设已准备好相应的路径和配置项 load_model_weights('path/to/deepseek_r1_distill_qwen', 'target_format') verify_conversion() ``` 通过上述步骤,理论上可以实现mindsped-llm环境下对deepseek_r1_distill_qwen的有效支持。不过值得注意的是,实际应用场景中还需考虑更多细节因素的影响,比如性能调优等方面的工作也必不可少。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值