Python入门实战:Python数据科学入门

本文介绍了Python在数据科学领域的应用,探讨了Python的基本数据结构、统计学运算、图形绘制方法,并讲解了kNN、Naive Bayes、决策树和SVM等机器学习算法。还分享了如何在Python环境下搭建数据科学平台,包括安装Anaconda、创建conda环境以及使用Jupyter Notebook。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

数据科学(Data Science)是一个由美国剑桥大学的Edgar Deangelis教授提出的术语,他将其定义为“利用数据分析获得洞察力、发现模式、解决问题和改进产品或服务能力的跨领域研究”。由于数据量大、多样性广、时效性快,以及人工智能、机器学习等新兴技术的发展,使得数据科学成为当今企业最值得关注的一类技术。

Python作为数据处理语言、统计分析工具、机器学习库、可视化工具等众多优点,在数据科学领域占有举足轻重的地位。它可以用来做数据预处理、清洗、探索、可视化、建模、异常检测等工作,并运用机器学习算法实现预测、分类、聚类、回归等功能。因此,掌握Python的数据科学技能是一项必备的基础知识。

2019年7月,Python正式升级至3.8版本,其中新增了很多重要的特性,如类型注解、异步I/O、类型检查器等。数据科学和相关应用也迎来了一段新的起色。随着越来越多的公司开始采用Python进行数据科学分析,越来越多的人开始关注如何高效地使用Python处理数据,以及如何构建更加健壮、可靠的数据科学平台。

本文将围绕以下几个关键点展开:

1)什么是Python数据科学?为什么要学Python?

2)Python中一些基本数据结构及其应用

3)Python中的基本统计学运算

4)Python中的基本图形绘制方法

5)如何通过Python进行数据可视化

6)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值