1.背景介绍
数据科学(Data Science)是一个由美国剑桥大学的Edgar Deangelis教授提出的术语,他将其定义为“利用数据分析获得洞察力、发现模式、解决问题和改进产品或服务能力的跨领域研究”。由于数据量大、多样性广、时效性快,以及人工智能、机器学习等新兴技术的发展,使得数据科学成为当今企业最值得关注的一类技术。
Python作为数据处理语言、统计分析工具、机器学习库、可视化工具等众多优点,在数据科学领域占有举足轻重的地位。它可以用来做数据预处理、清洗、探索、可视化、建模、异常检测等工作,并运用机器学习算法实现预测、分类、聚类、回归等功能。因此,掌握Python的数据科学技能是一项必备的基础知识。
2019年7月,Python正式升级至3.8版本,其中新增了很多重要的特性,如类型注解、异步I/O、类型检查器等。数据科学和相关应用也迎来了一段新的起色。随着越来越多的公司开始采用Python进行数据科学分析,越来越多的人开始关注如何高效地使用Python处理数据,以及如何构建更加健壮、可靠的数据科学平台。
本文将围绕以下几个关键点展开:
1)什么是Python数据科学?为什么要学Python?
2)Python中一些基本数据结构及其应用
3)Python中的基本统计学运算
4)Python中的基本图形绘制方法
5)如何通过Python进行数据可视化
6)