1. 背景介绍
图注意力网络(Graph Attention Network,简称GAT)是一种基于图神经网络(Graph Neural Networks,简称GNN)的深度学习方法。它能够处理具有复杂关系的节点数据,并在多个领域取得了显著的效果,如社交网络分析、推荐系统等。
2. 核心概念与联系
图注意力网络的核心概念是“注意力机制”,它可以帮助模型更好地关注特定的节点或边信息,从而提高模型的性能。GAT通过计算每个节点的自注意力和交互式注意力来捕捉节点间的关系。
3. 核心算法原理具体操作步骤
GAT的主要组成部分包括:输入层、attention模块、输出层。下面我们详细讲解其工作原理:
3.1 输入层
输入层接受一个无向图G(V, E, X),其中V表示节点集合,E表示边集合,X表示节点特征矩阵。
3.2 attention模块
attention模块负责计算节点之间的注意力分数。GAT使用两个神经网络层分别对应自注意力和交互式注意力。
3.2.1 自注意力
自注意力(Self-Attention)是GAT中的一种注意力机制,它可以帮助模型更好地关注自身输入的信息。在GAT中,自注意力通过以下步骤进行:
- 计算节点间的相似性分数:对于每个节点i,计算与其他所有节点j之间的相似度。
- 计算加权平均:根据相似性分数为每个节点i的特征向量加上权