基础模型、多模态数据、训练方法、Transformer、视觉语言模型、应用场景
1. 背景介绍
近年来,人工智能领域取得了令人瞩目的进展,其中基础模型在推动这一进步方面发挥了至关重要的作用。基础模型是指在海量数据上预训练的强大模型,能够泛化到各种下游任务,并展现出惊人的性能。传统的基础模型主要专注于单模态数据,例如文本或图像。然而,现实世界中信息往往是多模态的,例如文本、图像、音频、视频等。因此,如何训练能够处理多模态数据的基础模型,成为人工智能领域的一个重要研究方向。
多模态数据训练旨在训练模型能够理解和处理不同模态的数据,并从中提取有意义的信息。这对于许多应用场景具有重要意义,例如:
- 视觉问答: 理解图像内容并回答与之相关的文本问题。
- 图像字幕: 为图像生成描述性文本。
- 视频理解: 理解视频内容,例如动作识别、事件检测等。
- 跨模态检索: 根据文本查询找到相关的图像或视频。
2. 核心概念与联系
多模态数据训练的核心概念包括:
- 模态: 指不同类型的输入数据,例如文本、图像、音频等。
- 多模态表示: 将不同模态的数据转换为统一的表示形式,以便模型理解和处理。
- 跨模态交互: