扩展卡尔曼滤波器(Extended Kalman Filter,EKF)与标准卡尔曼滤波器类似,但适用于非线性系统。在智能驾驶中,目标运动通常是非线性的,因此EKF更适合这种情况。
4.3.1 扩展卡尔曼滤波器算法介绍
扩展卡尔曼滤波器(Extended Kalman Filter,EKF)是对卡尔曼滤波器的一种扩展,用于处理非线性系统模型或非线性测量模型的状态估计问题。与标准的卡尔曼滤波器不同,EKF在每个时间步骤中使用线性化技术来近似非线性系统或测量模型,从而使得卡尔曼滤波器能够应用于更广泛的实际问题中。
EKF的基本思想与卡尔曼滤波器类似,分为预测步骤和更新步骤,具体说明如下所示。
(1)预测步骤:在预测步骤中,通过应用系统的动态模型,预测下一个时间步骤的状态估计和状态协方差。对于非线性系统,通常通过在当前状态附近进行泰勒级数展开来线性化系统动态模型。
(2)更新步骤:在更新步骤中,利用传感器提供的测量数据,计算卡尔曼增益,并将预测的状态和测量值进行加权平均,得到更新后的状态估计和协方差估计。对于非线性系统,同样需要通过线性化技术(如雅可比矩阵)来