Actor-Critic(演员-评论家)是一种强化学习算法,通常用于解决连续动作空间的问题。其一个重要特点是它允许在学习过程中同时学习策略和价值函数,从而可以有效地处理连续动作空间和高维状态空间的问题。在本章的内容中,将详细讲解Actor-Critic算法的知识,为读者步入后面知识的学习打下基础。
10.1 Actor-Critic算法的介绍与原理
Actor-Critic(演员-评论家)算法是一种强化学习算法,用于解决马尔可夫决策过程(MDP)中的连续动作空间问题。Actor-Critic结合了两个重要的组件:演员(Actor)和评论家(Critic),每个组件有不同的角色和功能。
10.1.1 强化学习中的策略梯度方法
强化学习中的策略梯度方法是一类用于训练策略(policy)的算法,其目标是最大化预期累积奖励。与值函