13.3.6 实现深度强化学习算法
在本项目中,强化学习算法基于OpenAI Baselines和Stable Baselines实现。其中Stable Baselines是OpenAI Baselines的一个分支,经过了重大的结构重构和代码清理。在库FinRL中包含了经过微调的标准强化学习算法,如DQN、DDPG、多智能体DDPG、PPO、SAC、A2C和TD3,并且还允许用户通过调整这些强化学习算法来设计他们自己的DRL算法。
在本项目中,将使用滚动窗口集成方法(参考代码)训练并验证3个代理(A2C、PPO、DDPG)。
(1)创建一个名为ensemble_agent的强化学习集成代理,这个代理将使用给定的数据和配置来进行强化学习训练和验证,以及在交易期间执行策略,将实现滚动窗口集成方法来管理和优化投资组合。具体实现代码如下所示。
rebalance_window = 63 # rebalance_window is the number of days to retrain the model
v