(13-3-02)DDPG算法综合实战:基于强化学习的股票交易策略

本文介绍了如何使用深度强化学习算法,特别是A2C、PPO和DDPG,在股票交易中通过滚动窗口集成方法进行策略设计和优化。文章详细解释了参数设置、训练过程和验证,以及不同算法在实际交易中的性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

13.3.6  实现深度强化学习算法

在本项目中,强化学习算法基于OpenAI Baselines和Stable Baselines实现。其中Stable Baselines是OpenAI Baselines的一个分支,经过了重大的结构重构和代码清理。在库FinRL中包含了经过微调的标准强化学习算法,如DQN、DDPG、多智能体DDPG、PPO、SAC、A2C和TD3,并且还允许用户通过调整这些强化学习算法来设计他们自己的DRL算法。

在本项目中,将使用滚动窗口集成方法(参考代码)训练并验证3个代理(A2C、PPO、DDPG)。

(1)创建一个名为ensemble_agent的强化学习集成代理,这个代理将使用给定的数据和配置来进行强化学习训练和验证,以及在交易期间执行策略,将实现滚动窗口集成方法来管理和优化投资组合。具体实现代码如下所示。

rebalance_window = 63 # rebalance_window is the number of days to retrain the model
v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值