4.2 人工智能在信用风险评估中的应用
人工智能把信用风险评估从“季度报表+打分卡”升级为“实时多维感知系统”:通过 NLP 解析财报、新闻与电话纪要,CV 扫描发票和合同,GNN 刻画企业担保链及供应链网络,GBDT、Transformer 和联邦学习整合千万级结构化与非结构化特征,对违约概率(PD)、损失率(LGD)和风险敞口(EAD)进行分钟级滚动预测;辅以 SHAP 解释、对抗样本检测和在线微调,实现贷前秒级审批、贷中动态限额、贷后早期预警及资本计量一体化,不良率降低 20–40%,审批时效由天缩短至分钟,并满足监管可审计与公平合规要求。
4.2.1 传统信用评估方法的局限性
传统信用评估方法在实际应用中存在诸多局限性,主要体现在以下几个方面。
- 主观性较强:评估过程依赖人工判断,例如对 “品德”“环境” 等非量化指标的打分,易受评估人员经验、偏好甚至情绪影响,可能导致结果偏差。
- 数据维度有限:多依赖信贷历史、收入等传统数据,忽略社交媒体行为、消费习惯等新兴数据,难以全面反映借款人信用状况,尤其对信用记录空白的群体(如年轻人、小微企业)评估困难。
- 静态性与滞后性:评估结果基于历史数据,难以实时捕捉借款人当前的财务变化(如收入波动、突发负债),对动态风险的响应较慢。<