自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

彬彬侠的博客

人工智能算法工程师的笔记

  • 博客(1555)
  • 收藏
  • 关注

原创 【Dify】如何使用Dify

使用 Dify 开发大模型应用是一个相对直观的过程,适合从初学者到高级开发者。以下是详细的 Dify 使用指南,以条例清晰的方式,涵盖从安装到创建、优化和部署应用的完整流程。内容包括环境搭建、应用创建、核心功能使用(提示词、知识库、工具、工作流等)、API 集成以及常见问题处理。无论是想快速上手还是深入开发,都可以参考本文的步骤。

2025-07-10 18:50:06 861 1

原创 【Dify】什么是Dify

Dify 是一个开源的大模型应用开发平台,旨在帮助开发者、团队甚至非技术人员快速构建和部署基于大语言模型(LLM)的应用程序。它通过低代码、模块化的方式简化了 AI 应用的开发流程,支持多种场景,如对话机器人、文本生成、知识库检索(RAG)、工作流自动化等。Dify 的设计目标是降低 AI 应用开发的门槛,同时提供灵活的定制能力,适用于个人开发者、企业团队以及 AI 初学者。本文是对 Dify 的详细介绍,涵盖其定义、核心功能、应用场景、技术架构、优势与局限性等方面,结构清晰,条例分明。

2025-07-10 18:42:08 765

原创 【毕昇】如何使用毕昇(Bisheng)

毕昇通过模块化设计和可视化界面,极大降低了 LLM 应用的开发门槛。其核心优势在于 ETL4LLM 的数据处理能力和企业级支持,适合从简单问答到复杂 Agent 的开发。使用流程包括:1.部署平台(Docker Compose 或 Kubernetes)。2.配置模型和知识库。3.使用构建模块设计 Prompt 和工作流。4.测试和优化应用。

2025-07-08 19:43:07 894 1

原创 【毕昇】什么是毕昇(Bisheng)

毕昇(Bisheng) 是一个开源大模型应用开发平台,专为企业级场景设计,旨在帮助开发者、业务人员以及企业快速构建、部署和管理基于大语言模型(LLM)的智能应用。平台以中国古代活字印刷术发明人毕昇命名,寓意推动知识和智能应用的广泛传播与高效开发。本文是对毕昇的详细介绍,涵盖其背景、核心功能、技术架构、应用场景、优势以及与其他平台的对比。

2025-07-08 19:37:37 1267

原创 【Sophon LLMOps】什么是 Go Template 语法

Go Template 语法 是 Go 编程语言中用于生成动态内容的模板引擎语法,主要由 Go 的标准库 text/template 和 html/template 包提供。它广泛应用于生成 HTML 页面、配置文件、文本输出等场景,特别是在 Web 开发、CLI 工具或自动化脚本中。Go Template 语法设计简洁,基于占位符和指令,允许开发者将数据动态嵌入到模板中,同时支持条件判断、循环、变量定义等逻辑控制。Go Template 语法在 Sophon LLMOps 平台中的存在应用(如配置提示

2025-07-02 09:33:28 953 1

原创 【Sophon LLMOps】如何使用Transwarp Sophon LLMOps

Transwarp Sophon LLMOps 平台通过模块化的功能设计,提供了从语料管理到应用部署的端到端解决方案。以下是快速上手的总结步骤:登录并配置账号权限。上传并清洗语料,构建知识库。选择或训练模型,优化性能。使用零代码、低代码或编程方式开发应用。利用企业级管理功能确保安全和协作。

2025-07-02 09:24:22 613

原创 【Sophon LLMOps】什么是 Transwarp Sophon LLMOps?

Transwarp Sophon LLMOps 是由星环科技(Transwarp Technology)开发的一款企业级大模型全生命周期运营管理平台,旨在帮助企业和开发者高效地开发、训练、部署和管理大型语言模型(LLM)及相关应用。它通过集成化的工具链和模块化功能,覆盖从语料处理、模型训练、知识管理到应用开发、部署及运维的全流程,适用于多种业务场景(如智能客服、知识问答、内容生成等)。本文是对 Sophon LLMOps 的详细介绍,内容清晰、条理分明,涵盖其定义、核心功能、架构设计、应用场景及优势。

2025-07-02 09:20:29 800

原创 【LangChain】langchain.chains.history_aware_retriever.create_history_aware_retriever函数:创建结合对话历史进行语义检索链

create_history_aware_retriever 是 LangChain 库中的一个函数,位于 langchain.chains.history_aware_retriever 模块。它用于创建一个能够结合对话历史进行语义检索的链(chain),特别适合需要上下文感知的检索增强生成(RAG)场景。该函数通过语言模型(LLM)重构用户查询,结合历史对话上下文生成更精准的查询,从而从向量存储或其他检索器中获取相关文档。核心参数:llm:语言模型,用于查询重构。retriever:底层检索器,执行文档

2025-06-16 00:04:29 1265

原创 【LangChain】langchain_community.document_transformers 模块下的类和函数列举:多种文档转换器

langchain_community.document_transformers 模块是 LangChain 社区库的一部分,提供了多种文档转换器,用于处理、清洗、增强或转换文档内容。这些转换器主要用于文档预处理,适用于检索增强生成(RAG)、数据提取、文本清洗等场景。BeautifulSoupTransformer、DoctranPropertyExtractor、DoctranQATransformer、DoctranTextTranslator、EmbeddingsClusteringFilter、

2025-06-15 23:28:33 737

原创 【Python】threading 模块:用于实现多线程编程

Python 的 threading 模块是标准库的一部分,用于实现多线程编程,适合处理 I/O 密集型任务(如网络请求、文件读写),支持 Thread、Lock、Semaphore、Event、Queue、Timer 等。由于 Python 的全局解释器锁(GIL)限制,threading 不适合 CPU 密集型任务(这些任务应使用 multiprocessing)。threading 提供了创建和管理线程的 API,支持线程同步、通信和定时执行,接口简单且跨平台。本文将详细介绍 threading 模块

2025-06-15 23:07:01 1013

原创 【Python】multiprocessing 模块:实现多进程并行计算

Python 的 multiprocessing 模块是一个标准库模块,用于实现多进程并行计算。它通过创建独立的进程,绕过 Python 的全局解释器锁(GIL),在多核 CPU 上实现真正的并行,特别适合 CPU 密集型任务(如数值计算、图像处理),支持 Process、Pool、Queue、Pipe、Lock 等。相比线程(threading 模块),multiprocessing 更适合需要高性能计算的场景。本文将详细介绍 multiprocessing 模块的定义、功能、用法、示例、应用场景、最佳实

2025-06-15 23:00:06 781

原创 【Python】Gym 库:于开发和比较强化学习(Reinforcement Learning, RL)算法

Gym 是 Python 中一个广泛使用的开源库,用于开发和比较强化学习(Reinforcement Learning, RL)算法。它最初由 OpenAI 开发,提供标准化的环境接口,允许开发者在各种任务(如游戏、机器人控制、模拟物理系统)中测试 RL 算法。Gym 的设计简单且灵活,适合学术研究和工业应用。2022 年,Gym 被整合到 Gymnasium(由 Farama Foundation 维护)中,成为主流的强化学习环境库。本文以 Gymnasium(gymnasium)为基础,兼容旧版 Gym

2025-06-15 11:32:16 1199

原创 【RLHF】对抗偏好优化(Adversarial Preference Optimization, APO):通过对抗学习解决语言模型生成响应分布与人类偏好数据分布之间的漂移问题

对抗偏好优化(Adversarial Preference Optimization, APO) 是一种新颖的 RLHF 框架,旨在通过对抗学习(adversarial learning)解决语言模型(LLM)生成响应分布与人类偏好数据分布之间的漂移问题(sampling distribution shifting)。APO 通过在语言模型(LLM)和奖励模型(RM)之间进行类似于生成对抗网络(GAN)的最小-最大博弈(min-max game),实现高效的人类偏好对齐,而无需对新生成样本进行额外的人类偏好

2025-06-15 11:31:50 927

原创 【RLHF】直接偏好优化(Direct Preference Optimization, DPO):基于偏好数据优化语言模型

直接偏好优化(DPO) 是一种高效、简单的 RLHF 替代方法,通过直接基于偏好数据优化语言模型,省去了奖励模型和强化学习步骤。DPO 将偏好对齐问题转化为分类任务,利用语言模型的隐式奖励函数,性能与 PPO 相当(如胜率 ~70%),但训练成本显著降低(单 GPU 数小时)。其简单性和稳定性使其适合快速开发和资源受限场景,但对偏好数据质量依赖较高,缺乏 PPO 的动态探索能力。DPO 的提出简化了 RLHF 流程,为大语言模型对齐提供了新范式,未来可与 RLAIF 等技术结合,进一步提升效率和扩展性。

2025-06-15 11:31:21 805

原创 【RLHF】近端策略优化(Proximal Policy Optimization, PPO):优化语言模型以对齐人类偏好的核心强化学习算法

近端策略优化(PPO) 是 RLHF 中用于优化语言模型以对齐人类偏好的核心强化学习算法。它通过裁剪目标函数或 KL 正则化限制策略更新幅度,确保训练稳定性。PPO 在 RLHF 和 RLAIF 中表现出色,广泛应用于对话生成、文本摘要等任务,显著提升模型性能(如胜率 70%+)。尽管需要多个模型和在线采样,PPO 的简单性和鲁棒性使其成为行业标准。然而,其计算成本和超参数调优空间,促使研究者探索更高效的替代方法(如 DPO、RRHF、d-RLAIF)。在未来,PPO 与其他技术的结合可能进一步提升 RLH

2025-06-15 11:30:47 1074

原创 【RLHF】RLAIF( Scaling Reinforcement Learning from Human Feedback with AI Feedback):利用人工智能生成偏好标签来训练奖励模

RLAIF 是一种通过使用现成的(off-the-shelf)大语言模型生成偏好标签来训练奖励模型(Reward Model, RM),并利用该奖励模型进行强化学习,从而优化语言模型输出的方法。相比 RLHF 依赖人类标注的高质量偏好数据,RLAIF 利用 AI 模型(如 PaLM 2、ChatGPT 等)生成偏好标签,显著降低了数据收集的成本和时间。

2025-06-15 11:30:21 700

原创 【RLHF】RRHF(Rank Responses to Align Language Models with Human Feedback):基于人类反馈的排序学习

RRHF(Rank Responses to Align Language Models with Human Feedback)是一种新型的基于人类反馈的强化学习方法,旨在通过排名损失(ranking loss)将语言模型的输出与人类偏好对齐。RRHF 通过对来自不同来源的响应(如模型自身生成、其他大语言模型生成或人类专家提供)进行评分和排名,优化语言模型,使其生成更符合人类期望的输出。

2025-06-15 11:29:47 504

原创 【PyTorch】torch.multiprocessing 模块:在多个进程间共享和操作张量、模型等资源

torch.multiprocessing 是 PyTorch 提供的一个模块,用于在多个进程间共享和操作张量、模型等资源,支持并行计算和训练。它是对 Python 标准库 multiprocessing 的扩展,特别优化了与 PyTorch 张量和 CUDA 的集成,适用于多进程任务,如数据加载、模型训练等。

2025-06-15 11:28:17 814

原创 【PyTorch】torch.nn.parallel:提供了多种工具来实现模型的并行计算

torch.nn.parallel 是 PyTorch 的一个模块,提供了多种工具来实现模型的并行计算,主要是为了加速训练或处理大规模模型。它支持数据并行、分布式数据并行等方法,适用于单机多 GPU 或多机多 GPU 场景。

2025-06-15 11:27:40 934

原创 【PyTorch】torch.nn.parallel.DistributedDataParallel (DDP):在分布式训练中实现数据并行

torch.nn.parallel.DistributedDataParallel (DDP) 是 PyTorch 提供的一个类,用于在分布式训练中实现数据并行。它允许多个进程(可能分布在多个 GPU 或多个节点上)协同训练同一个模型,通过高效的梯度同步来加速训练。相比 torch.nn.DataParallel,DDP 更高效,支持多节点训练,是 PyTorch 分布式训练的首选工具。

2025-06-15 11:27:09 711

原创 【PyTorch】torch.distributed 模块:支持分布式训练和计算

torch.distributed 是 PyTorch 提供的一个模块,用于支持分布式训练和计算。它允许在多个进程、多个 GPU 甚至多个节点(机器)之间协同工作,适用于数据并行、模型并行等场景。torch.distributed 提供了进程间通信的工具(如集合通信操作)和分布式训练的关键组件,配合工具如 torchrun 可以轻松启动分布式任务。

2025-06-15 11:26:29 957

原创 【PyTorch】torchrun:分布式训练的启动和管理命令行工具

torchrun 是 PyTorch 提供的一个命令行工具,用于简化分布式训练的启动和管理。它在 PyTorch 1.10 中引入,作为 torch.distributed.launch 的升级替代品,提供了更简洁的接口、更好的弹性支持和容错能力,适用于单节点多 GPU 或多节点分布式训练。

2025-06-15 11:24:53 1357

原创 【PyTorch】torch.distributed.launch:启动分布式训练的工具(1.9 及之后的版本已弃用)

torch.distributed.launch 是一个 Python 模块,用于在单节点或多节点环境下启动多个进程来进行分布式训练。它通过命令行参数配置分布式环境,并在每个进程中运行指定的训练脚本。它在 PyTorch 1.9 及之后的版本中已被标记为已弃用,官方推荐使用 torchrun 替代,因为 torchrun 提供了更好的弹性、容错性和简化的使用方式。

2025-06-15 11:24:16 911

原创 什么是 JSON Schema:描述和验证 JSON 数据结构与内容的标准规范

JSON Schema 是一种用于描述和验证 JSON 数据结构与内容的标准规范,当前主要基于 Draft 2020-12(最新版本)。它以 JSON 格式定义数据的结构、类型、约束和规则,类似于数据库中的表结构或编程语言中的类型系统。JSON Schema 的核心作用是:描述:定义 JSON 数据的预期结构(如字段类型、必需字段、值范围)。验证:检查 JSON 数据是否符合定义的 schema,确保数据完整性和正确性。文档化:作为数据格式的文档,方便开发者和系统理解 API 或配置文件。

2025-06-04 12:18:44 1861

原创 什么是 JSON Patch:标准化的 JSON 文档更新机制

JSON Patch 是一种高效、标准化的 JSON 文档更新机制,通过 JSON Pointer 和操作集实现精确修改。其主要操作(add、remove、replace、move、copy、test)覆盖了常见的 JSON 修改需求,广泛应用于 API、配置文件管理和协作开发。JSON Patch 可优化配置更新和 API 测试流程,提升开发效率。

2025-06-04 12:10:02 1291

原创 【LangChain】langchain_community.vectorstores.docarray.DocArrayInMemorySearch 类:基于 DocArray 库实现的内存向量存储

langchain_community.vectorstores.docarray.in_memory.DocArrayInMemorySearch(以下简称 DocArrayInMemorySearch)是 LangChain 框架中基于 DocArray 库实现的内存向量存储类,专为小型数据集和快速原型开发设计。它支持将文本文档转换为嵌入向量并存储在内存中,提供高效的相似性搜索功能,广泛应用于语义搜索、检索增强生成(RAG)和对话系统等场景。本文将从定义、核心功能、创建方法、应用场景、示例代码和注意事项

2025-06-02 18:06:06 676

原创 【Python】DocArray 库:表示、传输、存储和搜索多模态数据(如文本、图像、音频、视频、3D 网格等)

DocArray 是一个 Python 库,专注于表示、传输、存储和搜索多模态数据(如文本、图像、音频、视频、3D 网格等),特别适用于机器学习(ML)和神经搜索(Neural Search)应用。它提供了一种灵活、Pythonic 的数据结构,基于 Pydantic,支持与 NumPy、PyTorch、TensorFlow 和 FastAPI 等生态系统的无缝集成。DocArray 自2020年起由 Jina AI 开发,2022 年开源并加入 LF AI & Data Foundation,采用 Apa

2025-06-02 17:26:49 567

原创 【Python】beautifulsoup4 库:解析 HTML 和 XML 文档

Beautiful Soup(beautifulsoup4)是 Python 中一个流行的第三方库,用于解析 HTML 和 XML 文档,提取数据或修改文档结构。它以简单、直观的 API 提供了强大的网页抓取功能,广泛应用于网络爬虫、数据提取和自动化测试等领域。Beautiful Soup 特别适合处理结构不规则或错误的 HTML 文档,配合 urllib 或 requests 等库使用效果更佳。

2025-06-02 12:41:17 1210

原创 【Pydantic】pydantic.Field() 函数:字段添加元数据和验证约束

在 Python 的 Pydantic 库中,Field 是一个用于为 Pydantic 模型中的字段添加元数据和验证约束的关键工具。它允许开发者为 BaseModel 类的字段定义额外的配置,例如默认值、别名、验证规则和文档说明。Field 提供了细粒度的控制,增强了 Pydantic 的声明式数据验证功能,广泛用于 API 开发(如 FastAPI)、数据管道和配置文件处理等场景。

2025-06-02 12:33:31 997

原创 【Pydantic】pydantic.BaseModel 类:定义数据模型的基类

BaseModel 是 Pydantic 的核心类,提供了声明式的数据模型定义方式,支持类型验证、数据解析、序列化(如 JSON)以及错误处理。它是构建 Pydantic 模型的基础,适用于 API 开发(如 FastAPI)、配置文件解析、数据管道等场景。

2025-06-01 22:35:19 816

原创 【asyncio】asyncio.gather() 函数:并发运行多个异步任务(协程)并收集它们的返回值

在 Python 中,asyncio.gather() 是 asyncio 模块提供的一个关键函数,用于并发运行多个异步任务(协程)并收集它们的返回值。它是异步编程中常用的工具,适合需要同时执行多个独立 I/O 操作(如网络请求、文件读写)的场景。asyncio.gather() 提高了代码效率,同时保持异步事件循环的非阻塞特性。通过 await asyncio.gather(*coroutines) 运行任务

2025-06-01 17:14:36 1504

原创 【asyncio】asyncio.Semaphore :限制同时运行的异步任务数量

在 Python 中,asyncio.Semaphore 是 asyncio 模块提供的一个异步并发控制工具,用于限制同时运行的异步任务数量。它是信号量(Semaphore)的异步版本,适合在异步编程中管理资源访问或限制并发,例如控制对共享资源的访问(如网络请求、数据库连接)或限制协程的并行执行数量。通过 async with 或 acquire/release 管理资源。

2025-06-01 16:37:14 1056

原创 【Python】urllib 模块:处理网络请求和 URL 操作

Python 的 urllib 模块是处理 URL 和网络请求的标准库工具,包含四个子模块:urllib.request:发送 HTTP/HTTPS 请求,下载文件。urllib.error:处理请求异常。urllib.parse:解析和编码 URL。urllib.robotparser:解析 robots.txt。其核心特点包括:简单易用:适合轻量级网络任务。应用场景:网页爬取、API 调用、文件下载、爬虫规则检查。最佳实践:异常处理、上下文管理器、设置请求头、参数化 URL。虽然 urllib 功能强大

2025-05-31 19:57:55 746

原创 【Python】tavily 库: 与 Tavily 搜索 API 交互的工具

tavily 库是 Python 中与 Tavily 搜索 API 交互的强大工具,专为 AI 代理和 LLM 优化,提供搜索、问答、内容提取、爬取和站点映射等功能。其同步和异步客户端支持灵活的集成,适用于聊天机器人、Web 爬虫、RAG 应用和自动化研究。研究表明,tavily 的响应速度和准确性优于传统爬虫方案。本文是对 tavily 库的详细介绍,内容以中文输出,结构清晰有序,涵盖定义、安装、核心功能、使用方法、性能、适用场景、注意事项及最佳实践

2025-05-30 18:19:16 1129

原创 【Python】海象运算符(Walrus Operator) := 同时进行赋值和返回值

在 Python 中,海象运算符(Walrus Operator) 是 Python 3.8(PEP 572)引入的一种新语法,写作 :=。它的正式名称是“赋值表达式(Assignment Expression)”,因其形似海象的“獠牙”(冒号和等号)而得名“海象运算符”。海象运算符允许在表达式中同时进行赋值和返回值,从而简化代码,减少重复计算,尤其在循环、条件语句和列表推导式等场景中非常有用。

2025-05-30 14:37:20 955

原创 【Node.js】如何使用 Node.js

使用 Node.js 主要涉及理解其核心概念、运行 JavaScript 代码、管理依赖、构建应用以及利用其生态系统。本文是详细指南,涵盖 Node.js 的基本使用方法、核心功能、常见场景、代码示例和最佳实践,帮助你快速上手。

2025-05-30 14:30:17 752

原创 【Node.js】如何安装 Node.js

安装 Node.js 是一个简单且直接的过程,适用于 Windows、macOS 和 Linux 系统。推荐通过官方网站下载 LTS 版本(简单直接)或使用包管理器/版本管理器(灵活高效)。安装后,验证 Node.js 和 NPM 版本,确保环境配置正确。遇到问题时,检查 PATH、权限或网络设置。本文是详细的安装步骤,涵盖多种安装方式、验证方法以及常见问题解决方法,确保你能顺利安装并开始使用 Node.js。

2025-05-30 14:29:59 764

原创 【Node.js】什么是 Node.js

Node.js 是一个开源、跨平台的 JavaScript 运行时环境,允许开发者在服务器端运行 JavaScript 代码。它基于 Google 的 V8 JavaScript 引擎(Chrome 浏览器使用的引擎),以高效、事件驱动和非阻塞 I/O 的特性闻名。以下是对 Node.js 的详细介绍,涵盖其定义、核心特性、架构、工作原理、应用场景以及优缺点。

2025-05-30 14:29:39 1069

原创 【Docker】如何在 Docker 中安装 MongoDB

在 Docker 中安装和运行 MongoDB 是一个快速且便携的方式,特别适合开发、测试或需要隔离环境的场景。Docker 允许你通过官方 MongoDB 镜像快速部署 MongoDB,无需手动配置环境。本文是详细的步骤,涵盖如何在 Docker 中安装 MongoDB、配置容器、连接数据库以及一些最佳实践和注意事项。

2025-05-30 14:29:20 2344

原创 【MongoDB】在 Python 中如何使用 MongoDB:通过官方支持的 PyMongo 库

在 Python 中使用 MongoDB 主要通过官方支持的 PyMongo 库来实现。PyMongo 是一个功能强大的 Python 驱动程序,允许你连接到 MongoDB 数据库并执行 CRUD 操作(创建、读取、更新、删除)、聚合查询等。本文是详细的指南,涵盖安装、连接、基本操作以及一些高级用例,帮助你快速上手在 Python 中使用 MongoDB。

2025-05-30 14:28:25 951

电影图数据库构造:基于Cypher查询语句创建影人关系网及其应用,Neo4j数据库 Movie Graph Guide 案例数据

电影图数据库数据,用于练习Cypher查询语言,数据操作的案例博文:https://blog.csdn.net/u013172930/article/details/146344398 本文档展示了利用Cypher查询语言为一部或多部影片构建图数据库的具体操作。每一条命令不仅涵盖了电影基本信息的录入(如年份与宣传语),还涉及到各个角色以及参与制作的核心团队——演员(含扮演角色)、导演、编剧以及制片人的详细关联,这构建起了一张密集的人际网络图谱。

2025-03-18

neo4j的配置文件,包含:neo4j.conf、neo4j-admin.conf、server-logs.xml、user-l

从docker容器里拿出来的配置文件。博文地址:https://blog.csdn.net/u013172930/article/details/146312566 可以复制到宿主机挂载数据卷使用:docker run -d --name neo4j -p 7474:7474 -p 7687:7687 -v /myneo4j/conf:/conf -v /myneo4j/data:/data --restart=unless-stopped neo4j

2025-03-17

Python基于toad实现生成评分卡 完整的示例代码和数据集

Python构建并评估一个基于toad库的信用评分卡(ScoreCard)。示例中演示了特征选择、分箱、WOE转换、模型评估以及评分卡生成等常见步骤。 代码解释说明的文章地址:https://blog.csdn.net/u013172930/article/details/144942976

2025-01-05

toad.selection.select函数示例的数据集和代码

用Python代码实现了一个toad库中的toad.selection.select函数自动选择特征的例子。文件中包含示例代码和使用的数据集。 代码解释说明的文章:https://blog.csdn.net/u013172930/article/details/144895167

2025-01-03

toad.selection.stepwise函数示例的数据集和代码

用Python代码实现了一个toad库中的toad.selection.stepwise函数逐步回归自动选择特征的例子。文件中包含示例代码和使用的数据集。 代码解释说明的文章:https://blog.csdn.net/u013172930/article/details/144895285

2025-01-03

Metropolis-Hastings算法和吉布斯采样(Gibbs sampling)算法Python代码实现

Python代码实现了马尔可夫链蒙特卡罗方法(MCMC)中的Metropolis-Hastings算法和吉布斯采样(Gibbs sampling)算法,并通过运行示例给出了图形化展示结果。 Metropolis-Hastings算法代码解释说明的博文:https://blog.csdn.net/u013172930/article/details/144663543 吉布斯采样(Gibbs sampling)算法代码解释说明的博文:https://blog.csdn.net/u013172930/article/details/144669980

2024-12-23

维特比算法Python代码实现

Python代码实现了隐马尔科夫模型、前向算法、维特比算法。 维特比算法代码解释说明的博文:https://blog.csdn.net/u013172930/article/details/144342467

2024-12-09

EM算法Python代码实现

Python代码实现了EM算法的基本流程,包括E步计算隐变量的后验概率和M步更新模型参数。 代码解释说明的博文:https://blog.csdn.net/u013172930/article/details/144146822

2024-11-29

朴素贝叶斯分类器算法Python代码实现

用Python代码实现了一个朴素贝叶斯分类器算法,代码中包含拟合函数、预测函数、简单数据运行示例。并列给出了调用sklearn中的代码。 代码解释说明的博文:https://blog.csdn.net/u013172930/article/details/144042608

2024-11-25

PCA算法Python代码实现

用Python代码实现了一个PCA类,对数据进行降维,给出了运行示例和可视化结果。 代码解释说明的博文:https://blog.csdn.net/u013172930/article/details/143839787

2024-11-17

随机森林(Random Forest)算法Python代码实现

用Python代码实现了一个随机森林(Random Forest)算法,包含了工具类、树类和主类,给出了测试示例。 代码解释说明的博文地址:https://blog.csdn.net/u013172930/article/details/143747111

2024-11-13

CatBoost使用示例

CatBoost使用的一个小例子,包含代码和数据。 代码解释的博文为:https://blog.csdn.net/u013172930/article/details/143723670

2024-11-12

XGBoost算法Python代码实现

用Python代码实现了一个XGBoost算法,包含了工具类、单棵树类和主类,给出了测试示例。 代码解释说明的博文地址: 1.https://blog.csdn.net/u013172930/article/details/143646812 2.https://blog.csdn.net/u013172930/article/details/143647144

2024-11-09

GBDT算法Python代码实现

用Python代码实现了一个GBDT类,训练和预测数据,给出了运行示例。代码解释说明的博客地址:https://blog.csdn.net/u013172930/article/details/143473024

2024-11-03

AdaBoost算法Python代码实现

代码实现了一个 Adaboost 类,用于训练和预测分类任务中的数据。代码解释说明的博客地址:https://blog.csdn.net/u013172930/article/details/143414440

2024-10-31

近似线性可分支持向量机Python代码实现

采用软间隔最大化策略,代码解释说明的博客地址:https://blog.csdn.net/u013172930/article/details/143270417

2024-10-27

构建ID3决策树的完整算法代码

构建ID3决策树的完整算法代码,核心部分讲解见博客地址:https://blog.csdn.net/u013172930/article/details/142694348

2024-10-03

计算测试集与训练集之间欧氏距离的代码

完整的代码,以sklearn的iris数据集为例,划分了测试集和训练集,计算测试集与训练集之间欧氏距离,并进行了可视化绘图

2024-09-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除