YOLOv8改进:注意力系列篇 |高效的通道先验卷积注意力(CPCA) | 中科院 2023.6

本文介绍了通道先验卷积注意力(CPCA)方法,并将其应用于YOLOv8,以提高小目标检测和复杂场景的性能。CPCA通过多尺度深度卷积模块实现动态的通道和空间注意力分布,提升模型的分割性能和资源效率。详细讨论了CPCA相对于现有方法的优势,并提供了将CPCA整合到YOLOv8的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🚀🚀🚀本文改进:高效的通道先验卷积注意力(CPCA)方法,支持注意力权重在通道和空间维度上的动态分布;

🚀🚀🚀CPCA 小目标检测&复杂场景首选,实现涨点

🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

1.CPCA介绍

 论文:[2306.05196] Channel prior convo

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值