YOLOv8-Seg改进:检测头全新创新篇 | P_improve_Segment结构创新

本文介绍了P_improve_Segment在YOLOv8-seg中的应用,这是一种新的分割结构头,旨在提高检测性能和效率。作者提出了Partial卷积(PConv)以减少冗余计算和内存访问,从而实现更快的神经网络。通过FasterNet,在多种平台上展现出更高的运行速度和准确性。详细步骤展示了如何将P_improve_Segment整合到YOLOv8中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🚀🚀🚀本文改进:P_improve_Segment全新的分割结构头创新,适配各个YOLO

🚀🚀🚀P_improve_Segment在各个场景都能够有效涨点

🚀🚀🚀YOLOv8-seg创新专栏http://t.csdnimg.cn/KLSdv

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;
1)手把手教你如何训练YOLOv8-seg;
2)模型创新,提升分割性能;
3)独家自研模块助力分割;

 1. P_improve_Segment介绍

    为了设计快速神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,作者观察到FLOPs的这种减少不一定会带来延迟的类似程度的减少。这主要源于每秒低浮点运算(FLOPS)效率低下。为了实现更快的网络,作者重新回顾了FLOPs的运算符,并证明了如此低的FLOPS

### 如何改进YOLOv8-seg模型的检测头性能和效果 #### 使用卷积块注意力模块(CBAM) 为了提升YOLOv8-seg模型的检测头性能,在其基础上引入卷积块注意力模块(Convolutional Block Attention Module, CBAM)。CBAM是一种轻量级且高效的注意力机制,能够显著增强CNN架构的表现力。该模块能够在不增加过多计算负担的情况下,提高特征表示的质量。 具体来说,给定中间层产生的特征映射,CBAM会沿两个独立维度——通道维(channel-wise) 和空间维(spatial-wise),依次生成注意力建模并将其应用于原始特征映射之上实现自适应特征精炼过程[^3]。 ```python import torch.nn as nn class CBAM(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']): super(CBAM, self).__init__() # Channel attention module self.channel_attention = ChannelAttention(gate_channels, reduction_ratio, pool_types) # Spatial attention module self.spatial_attention = SpatialAttention() def forward(self, x): out = self.channel_attention(x) * x # channel attention first out = self.spatial_attention(out) * out # then spatial attention return out def add_cbam_to_yolov8seg(model): """ Add CBAM to the detection head of YOLOv8-seg model. Args: model (nn.Module): The original YOLOv8-seg model instance. Returns: modified_model (nn.Module): Modified YOLOv8-seg with added CBAM layers. """ for name, layer in model.named_children(): if isinstance(layer, DetectionHead): # Assuming there's a class named `DetectionHead` that represents the detection head part setattr(model, name, nn.Sequential( CBAM(layer.in_channels), layer)) return model ``` 通过上述方法可以在YOLOv8-seg原有结构中加入CBAM组件,从而改善对于不同尺度物体尤其是小目标的识别精度以及整体分割质量。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值