YOLOv8-Seg改进:轻量级Backbone改进 | VanillaNet极简神经网络模型 | 华为诺亚2023

本文介绍了将极简神经网络模型VanillaNet应用于YOLOv8-seg的改进过程,VanillaNet由华为诺亚和悉尼大学的研究者提出,摒弃复杂操作,仅保留基本卷积,却在计算机视觉任务中表现出色。通过修改YOLOv8的backbone,具体包括VanillaNet.py的创建、tasks.py的注册以及yolov8-seg_VanillaNet.yaml的配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🚀🚀🚀本文改进:一种极简的神经网络模型 VanillaNet,支持vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11等版本,相比较yolov8-seg各个版本如下:

layers parameters gradients GFLOPs
vanillanet_5
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值