目录
1. Shuffle 是个啥?为什么它在 Spark 里这么重要?
2. Shuffle 的两大阶段:Map 端与 Reduce 端
3. Spark Shuffle 的两种实现:Sort-Based Shuffle
5. Shuffle 的优化神器:Combiner 与 Map-Side 聚合
8. Shuffle 与 Spark SQL:隐形的性能陷阱
9. Shuffle 监控与诊断:用 Spark UI 找到瓶颈
1. Shuffle 是个啥?为什么它在 Spark 里这么重要?
Spark 的核心魅力在于它的分布式计算能力,而 Shuffle 作为 Spark 分布式计算的“幕后英雄”,却是最容易被忽视又最容易翻车的环节。简单来说,Shuffle 是 Spark 在处理数据时,将数据从一个节点“洗牌”到另一个节点的过程。
想象一下,你在玩一副扑克牌,想把所有的红桃牌集中到一起,梅花牌分到另一堆。这需要把牌从原来的顺序打乱、重新分配。Spark 的 Shuffle 干的就是这种活儿:把数据按照某种规则(比如 key)重新分区,分发到不同的计算节点上,