在深度学习中,概率论和数理统计是理解许多算法背后的理论基础。这些知识在处理不确定性、估计模型参数、理解数据分布等方面非常关键
1、概率
一种用来描述随机事件发生的可能性的数字度量,表示某一事件发生的可能性。
概率并不客观存在,是一种不确定性的度量。它的范围在【0,1】之间,0表示不可能发生,1表示必然发生。
概率公式:P(A) = 事件A发生的次数/总事件数
在深度学习中,概率用于表示模型预测某一结果的可能性。例如,分类问题中,输出为某一类别的概率。
2、概率和深度学习
概率论在深度学习中的应用广泛,它帮助我们理解模型的不确定性、推理和决策过程。
概率可以用来表示模型的准确率。概率可以用来描述模型的不确定性。概率可以作为模型损失的度量。
概率在深度学习中的作用包括:
- 模型的不确定性:如在贝叶斯神经网络中,权重是随机变量,通过概率表示模型的不确定性。
- 损失函数的定义:如交叉熵损失函数,是基于概率的度量。
- 生成模型:如变分自编码器(VAE)和生成对抗网络(GANs)都基于概率理论来生成新数据。
3、概率的研究
3.1 频率学派(Frequentist Probability)
频率学派定义概率为长期重复试验中事件发生的相对频率,即在无限次试验中,某事件发生的频率会趋近于某个稳定值。因此概率计算公式
,即
注:n是实验的总次数
3.1.1 典型应用:
- 大规模的实验数据,如质量控制中的产品抽样检验、医学研究中的临床试验等。
3.1.2 不足之处:
- 依赖大量实验:频率学派的定义依赖于无限次的重复实验。实际中,我们往往只能进行有限次实验,尤其在某些领域(如医学、天文),难以进行大量实验,这使得频率定义的概率无法准确反映现实情况。
- 不能处理单次事件:频率学派无法为一次性事件(如某个人是否会罹患某种疾病)提供合理的概率估计。这种情况使得频率学派在许多实际场景中无法给出明确答案。
- 不能处理主观信念:频率学派仅依赖于观察数据,无法量化基于个人信念或历史经验的主观判断。这在某些领域(如预测未来事件)表现出局限性。
3.2 古典学派(Classical Probability)-- 平均主义的倡导者
无法掌握先验知识的情况下,未知事件发生的概率都是相等的。
古典学派的概率理论起源于17世纪,基于对称性和等可能性概念进行推导。它的基本思想是:如果一个实验的所有可能结果数量有限,并且这些结果的发生机会是均等的,那么事件A的概率可以定义为
3.2.1 典型应用:
- 抛硬币、掷骰子等简单实验,其中所有结果都是等可能的。
3.2.2 不足之处:
- 依赖于等可能性假设:古典学派要求所有结果的发生是等可能的,但在实际问题中,等可能性常常难以实现。例如,无法保证现实生活中的每个事件都是等概率的。
- 不适合复杂问题:对于较为复杂的现象(如金融市场或生物实验),结果往往不具有对称性和等可能性,古典学派的适用性有限。
- 主观性限制:古典学派的概率值只能用于那些有明确对称结构的情