端到端机器学习导航:
【机器学习】python借助pandas加载并显示csv数据文件,并绘制直方图
【机器学习】python使用matplotlib进行二维数据绘图并保存为png图片
【机器学习】python借助pandas及scikit-learn使用三种方法分割训练集及测试集
【机器学习】python借助pandas及matplotlib将输入数据可视化,并计算相关性
【机器学习】python机器学习借助scikit-learn进行数据预处理工作:缺失值填补,文本处理(一)
【机器学习】python机器学习scikit-learn和pandas进行Pipeline处理工作:归一化和标准化及自定义转换器(二)
【机器学习】python机器学习使用scikit-learn评估模型:基于普通抽样及分层抽样的k折交叉验证做模型选择
【机器学习】python机器学习使用scikit-learn对模型进行微调:使用GridSearchCV及RandomizedSearchCV
【机器学习】python机器学习使用scikit-learn对模型进行评估:使用t分布及z分布评估模型误差的95%置信空间
【机器学习】python机器学习使用scikit-learn对模型进行微调:RandomizedSearchCV的分布参数设置
【机器学习】python机器学习使用scikit-learn对模型进行微调:按特征贡献大小保留最重要k个特征的transform
【机器学习】python机器学习使用scikit-learn对模型进行微调:使用RandomizedSearchCV对pipline进行参数选择
1.重要性筛选器的transformer为:
from sklearn.base import BaseEstimator, TransformerMixin
def indices_of_top_k(arr, k):
#np.argpartition ()将传入的数组arr分成 两部分 ,即:排在第k位置前面的数都小于k位置,排在第k位置后面的值都大于k位置
#np.argpartition(np.array(arr), -k)保证最后k个数大于k位置的数,[-k:]取最后的k个值,这个组合求数组内最大的k个数
#该函数返回的是下标,再按下标进行排序
return np.sort(np.argpartition(np.array(arr), -k)[-k:])
class TopFeatureSelector(BaseEstimator, TransformerMixin):
#feature_importances为特证重要度,越大重要度越高
def __init__(self, feature_importances, k):
self.feature_importances = feature_importances
self.k = k
def fit(self, X, y=None):
self.feature_indices_ = indices_of_top_k(self.feature_importances, self.k)
return self
def transform(self, X):
return X[:, self.feature_indices_]
2.用例:
这里以树模型进行举例:feature_importances_ 参数目前只出现在决策树或以决策树为基础的评估器中:
数据准备:
import os
HOUSING_PATH = os.path.join("datasets", "housing")
import pandas as pd
def load_housing_data(housing_path=HOUSING_PATH):
csv_path = os.path.join(housing_path, "housing.csv")
return pd.read_csv(csv_path)
housing=load_housing_data()
housing2=housing.copy()
import numpy as np
#预处理前去掉带文字的指定列
from sklearn.preprocessing import MinMaxScaler,StandardScaler,OneHotEncoder
from sklearn.impute import SimpleImputer
housing_num = housing2.drop("ocean_proximity", axis=1)
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
num_pipeline = Pipeline([
('imputer', SimpleImputer(strategy="median")),
('std_scaler', StandardScaler())
])
from sklearn.compose import ColumnTransformer
#返回所有列名
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
#找出待独热编码列的最大分类数,不然在进行测试集划分处理时,
#容易造成独热向量因测试集构成不同而列数不一致的情况
categories=housing2['ocean_proximity'].unique()
full_pipeline = ColumnTransformer([
("num", num_pipeline, num_attribs),
("cat", OneHotEncoder(categories=[categories]), cat_attribs),
])
#抽样后的数据,去除预测目标列,并拿出对应目标列准备数据训练
housing_labels = housing2["median_house_value"]
housing_prepared = full_pipeline.fit_transform(housing2)
from sklearn.model_selection import train_test_split
train_set, test_set,train_sety, test_sety = train_test_split(housing_prepared,housing_labels, test_size=0.1, random_state=42)
预测得到特征贡献值,并用本文特征筛选器进行筛选:
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
import numpy as np
param_distribs = {
#对于搜索范围是list的超参数,在给定的list中等概率采样
'kernel': ['linear', 'rbf'],
'C': reciprocal(20, 200),
'gamma': expon(scale=1.0),
}
forest_reg = RandomForestRegressor(random_state=42)
forest_reg.fit(train_set[:1000], train_sety[:1000])
print(forest_reg.feature_importances_)
importantArray=forest_reg.feature_importances_
from sklearn.base import BaseEstimator, TransformerMixin
def indices_of_top_k(arr, k):
#np.argpartition ()将传入的数组arr分成 两部分 ,即:排在第k位置前面的数都小于k位置,排在第k位置后面的值都大于k位置
#np.argpartition(np.array(arr), -k)保证最后k个数大于k位置的数,[-k:]取最后的k个值,这个组合求数组内最大的k个数
#该函数返回的是下标,再按下标进行排序
return np.sort(np.argpartition(np.array(arr), -k)[-k:])
class TopFeatureSelector(BaseEstimator, TransformerMixin):
#feature_importances为特证重要度,越大重要度越高
def __init__(self, feature_importances, k):
self.feature_importances = feature_importances
self.k = k
def fit(self, X, y=None):
self.feature_indices_ = indices_of_top_k(self.feature_importances, self.k)
return self
def transform(self, X):
return X[:, self.feature_indices_]
#有了重要特征后重新训练:
full_pipeline2= Pipeline([
('prepared', full_pipeline),
("filter",TopFeatureSelector(importantArray,5))
])
housing_prepared = full_pipeline2.fit_transform(housing2)
print(housing_prepared.shape)
输出为:
原始特征贡献度列表为:[1.02515161e-05 1.61509216e-05 1.76575395e-05 1.02708858e-05
1.12920206e-05 1.58529503e-05 8.76720983e-06 1.89549348e-05
9.99882943e-01 1.34032475e-06 2.87741167e-06 1.97157680e-06
1.66973611e-06 0.00000000e+00]
最终特征矩阵大小为(20640, 5)
由此得到新的5列最重要的特征。