第四章-AllData数据中台-源码编译部署

本文档详细介绍了AllData数据中台的源码编译、部署过程以及生产环境的设置。涵盖了后端源码结构、前端结构、功能概览、数据库初始化、配置修改、后端与前端的启动方法、生产环境部署步骤以及常见问题。提供了一站式的部署解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AllData部署程序效果图

在这里插入图片描述
在这里插入图片描述

一、后端源码

├── studio
│ ├── config(配置中心,必须启动)
│ ├── eureka(注册中心,必须启动)
│ ├── gateway(网关,必须启动)
│ ├── install(脚本目录,数据库脚本必须)
│ │ ├── 16gdata
│ │ ├── 16gmaster
│ │ │ ├──studio
│ │ │ │ ├──studio-0.x.x.sql
│ ├── modules(各模块目录)
│ │ ├── codegen-service-parent(代码生成模块,可选启动)
│ │ ├── data-market-service-parent(数据集市模块࿰

### 关于Open3D和Python-PCL库的使用教程及安装 #### Open3D简介 Open3D是一个开源的三维数据处理库,支持多种编程语言,其中包括Python。该库提供了丰富的API来处理点云、网格以及其他形式的几何体。对于不同版本的选择,主要取决于具体应用场景的需求以及兼容性考虑[^4]。 #### Python-PCL概述 Python-PCL是Point Cloud Library(PCL)的一个Python绑定接口,在Ubuntu 18.04环境下可以通过一系列预定义步骤完成其配置与部署工作。这使得用户能够在Python脚本中调用强大的PCL功能来进行复杂的点云计算任务[^1]。 #### 安装指导 为了顺利安装这两个工具包,建议先确认操作系统已准备好必要的依赖项: - 对于Python-PCL而言,除了基本的Python开发环境外还需要预先设置好C++编写的PCL核心组件; - 而针对Open3D,则通常只需要具备标准的pip管理器即可轻松获取最新发布的稳定版软件包。 具体的安装指令如下所示: ```bash # 更新系统包列表并安装基础构建工具和其他必需品 sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install build-essential cmake git pkg-config libeigen3-dev libflann1.9 libflann-dev libboost-all-dev libsuitesparse-dev libqhull* libgtest-dev libcgal-dev libglu1-mesa-dev freeglut3-dev qtbase5-dev python3-pip python3-setuptools python3-numpy python3-scipy python3-opencv -y # 下载并解压指定版本的PCL源码(此处以v1.8为例) wget https://github.com/PointCloudLibrary/pcl/archive/pcl-1.8.0.tar.gz tar zxvf pcl-1.8.0.tar.gz cd pcl-pcl-1.8.0/ # 编译并安装PCL mkdir build && cd build/ cmake .. make -j$(nproc) sudo make install # 设置环境变量以便后续能够正常加载动态链接库 echo 'export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig' >> ~/.bashrc source ~/.bashrc # 利用pip安装Python-PCL模块 pip3 install python-pcl # 接下来可以直接通过pip安装Open3D pip3 install open3d ``` 上述过程涵盖了从准备到最终应用所需的一切准备工作。值得注意的是,实际操作过程中可能会遇到一些细微差异或额外需求,因此官方文档始终是最权威的信息来源之一[^1][^2]。 #### 示例代码展示 下面给出一段简单的例子用来演示如何利用Python-PCL读入一个PLY格式文件,并对其进行下采样过滤处理后再保存回磁盘。 ```python import numpy as np from pyntcloud import PyntCloud import pandas as pd import pcl.pcl_visualization def downsample_cloud(input_filename, output_filename): cloud = PyntCloud.from_file(input_filename) # 将PyntCloud对象转换成numpy数组形式的数据结构 points_data = np.array(cloud.points.values.tolist()) # 创建一个新的pcl.PointXYZ类型的点集实例 point_cloud_pcl = pcl.PointCloud() point_cloud_pcl.from_array(points_data.astype(np.float32)) # 执行VoxelGrid滤波算法实现均匀化降噪效果 fil = point_cloud_pcl.make_voxel_grid_filter() VOXEL_SIZE = 0.01 # 单位为米 fil.set_leaf_size(VOXEL_SIZE, VOXEL_SIZE, VOXEL_SIZE) filtered_point_cloud = fil.filter() # 把经过处理后的点重新封装回到pandas DataFrame里边去 df_filtered_points = pd.DataFrame(filtered_point_cloud.to_array()) new_cloud = PyntCloud(df_filtered_points) # 输出简化过后的模型至目标路径下的新文件当中 new_cloud.to_file(output_filename) if __name__ == "__main__": input_path = "./example_input.ply" output_path = "./downsampled_output.ply" try: downsample_cloud(input_path, output_path) print(f"Successfully processed {input_path} and saved result to {output_path}.") except Exception as e: print(e) ``` 此段程序片段不仅体现了Python-PCL的强大之处,同时也证明了与其他第三方类库良好协作的能力。更多高级特性和深入细节可参阅相关手册资料获得进一步学习机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AllData公司负责人

AllData数据中台知识星球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值