🔥🔥 AllData大数据产品是可定义数据中台,以数据平台为底座,以数据中台为桥梁,以机器学习平台为中层框架,以大模型应用为上游产品,提供全链路数字化解决方案。
✨AllData数据中台官方公众号平台:大数据商业驱动引擎
✨杭州奥零数据科技官网:http://www.aolingdata.com
✨AllData开源项目:https://github.com/alldatacenter/alldata
✨AllData官方文档:https://alldata-document.readthedocs.io
✨AllData社区文档:https://docs.qq.com/doc/DVHlkSEtvVXVCdEFo
📖 「 实时开发IDE 」
AIIData数据中台实时开发IDE,基于开源项目Dinky构建。具备强大的调试功能,能实时追踪代码执行过程,快速定位问题。支持多种实时计算引擎,无缝适配不同业务场景。
🔗 开源项目地址:https://github.com/DataLinkDC/dinky
实时开发IDE(Dinky)提供完善的任务管理与监控模块,可实时查看任务运行状态、资源占用等关键指标。还能与数据中台其他组件高效协同,简化数据流转,大幅提升实时开发效率,助力企业快速响应业务需求,挖掘数据实时价值。
📖 「 功能优势 」
01 灵活的任务管理
支持任务的定时调度和全生命周期管理,开发者可以根据业务需求灵活配置任务执行计划。任务状态的实时监控和日志查看功能,帮助开发者及时掌握任务运行情况。
02 丰富的数据源支持
集成了多种常见数据源的连接器,支持快速接入和处理来自不同数据源的数据。这为开发者提供了更多的数据选择,满足了不同业务场景的需求。
03 可视化与监控
可视化DAG编辑器和实时监控功能,使得实时计算任务的开发和运维更加直观和便捷。开发者可以通过图形化界面快速构建任务,并通过监控面板实时了解任务运行情况。
📖 「 数据分析需求及目标 」
核心价值契合点
01 敏捷开发:Dinky的SQL/UDF模板库与可视化开发界面,降低实时任务开发门槛,缩短需求响应周期。
02 高可靠计算:依托Flink的Exactly-Once语义与Dinky的Checkpoint管理,保障实时计算准确性。
03 合规与安全:内置数据脱敏插件与权限分级控制,满足GDPR及《个人信息保护法》要求。
📖 「 技术实现路径 」
1.数据接入层
- 外部数据源
通过Dinky的HTTP/JDBC Connector接入竞品API、行业数据库,配置增量同步策略(如时间戳字段)。
- 埋点日志消费
Kafka中的用户行为数据(JSON格式),使用Dinky的Schema Registry自动解析字段。
2.实时计算层
- 市场趋势分析
sql
-- 实时计算竞品价格波动率
CREATE TABLE competitor_price_alert ASSELECT
product_id,
AVG(price) AS avg_price,
STDDEV(price) AS std_dev,
CASE WHEN (MAX(price) - MIN(price)) / MIN(price) > 0.1 THEN 'ALERT' ELSE 'NORMAL' END AS alert_level
FROM kafka_source
GROUP BY TUMBLE(event_time, INTERVAL '5' MINUTE), product_id;
- 用户行为分析
使用Dinky的CEP库定义流失模式(如连续3天未登录且关键行为缺失),触发实时预警。
3.输出与告警层
- 告警推送
集成企业微信/钉钉机器人,通过Dinky的UDF函数发送告警消息。
- 指标存储
将关键指标写入AllData中台的SuperSonic指标库,供后续BI分析。
📖 「 AllData数据中台 - 主页 」
📖 「 功能点展示 」
实时开发IDE(Dinky)以低代码拖拽式开发、Flink引擎兼容、可视化调试与SQL标准语法为核心优势,可高效支撑市场趋势预测、用户行为实时响应、产品性能动态监控等场景,确保数据价值实时释放。
📖 「 应用场景 」
01 高效SQL开发体验:
提供Web端Flink SQL智能编辑器,支持语法高亮、自动补全、执行计划可视化与逐行调试,开发者无需搭建集群即可完成实时任务逻辑验证;
02 低资源轻量化部署:
单机最低2GB内存即可运行,适配边缘计算、IoT设备等资源受限场景,可快速部署实时设备监控、车联网告警等轻量级任务;
03 插件化生态扩展:
内置Kafka、Hive等20+数据源插件,支持UDF函数一键注册与第三方服务集成,降低实时计算技术门槛。
📖 「 风险与应对措施 」
01 数据质量问题
风险:数据来源不可靠或质量低,导致分析结果偏差。
措施:在Dinky中配置数据校验规则,建立数据质量监控体系。
02 实时任务性能瓶颈
风险:高并发场景下,实时任务处理延迟增加。
措施:优化Flink SQL逻辑,增加并行度,监控资源使用情况。
03 合规与隐私风险
风险:用户行为数据涉及隐私,需符合GDPR等法规。
措施:对敏感数据进行脱敏处理,限制数据访问权限。