人工智能时代,还需要学编程吗?

图片

DeepSeek的大爆发,貌似更是让程序员的失业危机近在咫尺。

AI工具的崛起,的确对传统编程岗位产生了冲击,尤其是那些重复性、规律性强的基础编程工作。但程序员的工作并非仅有这些,还包括大量的创造性劳动。在解决复杂任务的过程中,程序员往往要根据实际需求对算法和程序进行优化。

在很多现实场景中,AI确实能干活,但也需要程序员指导AI去干活。所以AI工具并非程序员的“终结者”,而是“助力者”。

美国一份工智能教育研究报告明确提出:“在人工智能时代,计算机科学比以往任何时候都更加重要。”报告还提到:“即使编程变得过时,基础的计算机科学仍至关重要。”在很多现实场景中,AI确实能干活,但也需要程序员指导AI去干活。

因此,系统性地学习计算机科学基础知识,掌握人工智能技术的底层逻辑,将是程序员能力跃迁的最佳选择。

近日,经典的计算机系统零基础入门教程《计算机系统要素》新鲜上市!很适合作为大学新生、高中生初学编程的第一本书!全球已有400多所高校将本书纳入教学体系。

图片

作者认为“理解计算机系统的最佳方法是从零开始构建一台计算机”,这本书手把手带你深入了解以下主题:

  • 硬件:布尔运算,组合逻辑,时序逻辑,逻辑门、多路选择器、触发器、寄存器、RAM 单元、计数器的设计与实现,硬件描述语言,芯片模拟、验证和测试。

  • 架构:ALU/CPU 的设计和实现、时钟和周期、寻址模式、取指和执行逻辑、指令集、基于内存映射的输入/输出。

  • 低级语言:一个简单的机器语言(包括二进制版和符号版)的设计与实现、指令集、汇编编程、汇编器。

  • 虚拟机:基于栈的自动机、基于栈的算术运算、函数调用和返回、递归的处理、一个简单的虚拟机语言的设计与实现。

  • 高级语言:一个简单的面向对象的、类似Java的语言的设计与实现,涉及抽象数据类型、类、构造函数、方法、作用域规则、语法和语义、引用等内容。

  • 编译器:词法分析、语法分析、符号表、代码生成、数组和对象的实现、两层编译模型。

  • 编程:按照提供的API实现一个汇编器、一个虚拟机和一个编译器,可以使用任何编程语言完成。

  • 操作系统:设计和实现内存管理、数学库、输入/输出驱动程序、字符串处理、文本输出、图形输出和高级语言支持。

  • 数据结构和算法:栈、哈希表、列表、树、算术运算的算法、几何算法和运行时系统。

  • 软件工程:模块化设计、接口/实现的范式、API设计和文档、单元测试、主动测试计划、质量保证和大规模编程。

图片

图片

图片

图片

图片

赶快入手《计算机系统要素》,从零开始构建你的第一台计算机!

图片

✓ 购买链接自取

当当:https://product.dangdang.com/29887436.html
京东:https://item.jd.com/15034864.html
 

<think>嗯,用户问现在AI这么厉害,机器人都会自己编程了,人类还有必要编程吗?这个问题看起来挺常见的,可能很多人都有这样的疑问。首先,我需要理解用户为什么会这么问。可能他们觉得AI发展迅速,像GitHub Copilot或者ChatGPT这样的工具能生成代码,自动完成编程任务,所以担心编程的意义。 然后,我得分析AI在编程中的实际应用。确实,AI可以辅助生成代码片段,提高开发效率,但完全取代人类编程还有差距。比如,AI可能在处理复杂逻辑、理解业务需求、系统设计等方面还不够成熟。这时候需要人类的判断和创造力。 接下来,考虑用户可能的背景。可能用户是生或者正在考虑是否编程的人,担心投入时间习后,技能会被AI取代。这时候需要强调编程带来的思维训练,比如逻辑思维、问题分解能力,这些是无论AI如何发展都重要的能力。 还要提到,AI作为工具,能帮助人类更高效地工作,但工具的使用者还是需要具备基础知识。比如,使用AI生成的代码,如果不懂编程,可能无法调试或优化,甚至无法判断代码是否正确。 另外,可以举一些实际例子,比如AI在生成代码时可能会出错,或者无法理解特定的业务场景,这时候需要程序员介入调整。这说明编程技能依然关键。 还要考虑未来趋势,虽然AI能处理部分编码工作,但高层次的设计、架构、创新仍然依赖人类。同时,编程可能会转向更高抽象层次的工作,比如指导AI完成任务,这也需要一定的编程知识。 最后,总结编程的必要性,不仅是为了写代码,更是培养解决问题的能力,这在各个领域都有用。同时,AI作为辅助工具,掌握编程能让人更好地利用这些工具,提升自身竞争力。 需要确保回答结构清晰,分点说明,用例子支持观点,并保持积极鼓励的态度,让用户明白编程仍有价值,不会被AI取代,而是与AI协作。</think>关于"AI智能化时代人类是否仍需编程",我们可以从以下几个层面分析: ### 一、AI编程的现状与局限 1. **代码生成≠系统构建** AI(如GitHub Copilot、ChatGPT)擅长生成代码片段,但无法自主完成: - 业务场景理解(如医疗系统与电商系统的差异需求) - 系统架构设计(如微服务拆分、数据库选型) - 代码质量把控(如内存泄漏检测、性能优化) 2. **调试依赖人类经验** 当AI生成代码出现错误时,需程序员通过: - 断点调试 $$ \text{Debug}(code) = \int_{error}^{fix} \text{逻辑分析} \, dt $$ - 日志分析 - 单元测试修正 ### 二、编程的核心价值 1. **计算思维培养** 编程训练带来的能力迁移: ``` 问题分解 → 模式识别 → 抽象建模 → 算法设计 ``` 这种思维模式适用于金融分析、科研实验等非编程场景 2. **人机协作新范式** 未来工作模式将是: $$ \text{人类} \xrightarrow{\text{需求抽象}} \text{AI} \xrightarrow{\text{代码生成}} \text{解决方案} $$ 如产品经理通过伪代码指导AI实现功能 ### 三、AI时代编程教育转型 1. **习重心转移** | 传统重点 | 新时代重点 | |----------------|----------------| | 语法记忆 | 逻辑表达能力 | | 底层代码实现 | 系统设计思维 | | 单一语言掌握 | 跨域问题抽象 | 2. **教育案例** 麻省理工院已开设"人类与AI协同编程"课程,训练生: - 精确描述需求 - 评估AI输出 - 进行代码整合 ### 四、行业需求变化 2023年Stack Overflow调查显示: - 78%开发者使用AI辅助编程 - 但系统架构师需求增长40% - 提示词工程师(AI训导师)成为新兴职位 ### 结论建议 1. **基础仍需掌握** 至少理解编程逻辑(如条件判断/循环结构),否则无法有效使用AI工具 2. **高阶能力增值** 聚焦: - 领域知识(如生物信息) - 系统设计(如分布式架构) - 创新思维(如量子计算应用) AI本质是生产力工具,如同计算器未取代数家,编程AI也不会淘汰程序员,而是推动人类向更高价值领域进阶。掌握编程能力,将成为驾驭智能时代的"元技能"。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

I'mAllen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值