文章目录
一、幻觉定义
备注(下面提及的两个名词):
- Faithfulness:是否遵循input content;
- Factualness:是否符合世界知识;
- 传统nlp任务重,幻觉大多数是faithfulness,比如Intrinsic Hallucination(冲突),摘要内容和document内容有冲突;再比如Extrinsic Hallucination(无中生有),生成内容中包含input要求的其他杂七杂八虚假信息;但LLM应该考虑的幻觉Factualness,因为数据源是Open-doman的世界知识
(1)幻觉问题:回答不准确、前后不一致等,生成内容并非基于训练数据或不符合事实。
(2)chatgpt工程师:
考虑到最大似然性目标,模型的这种选择是显而易见的,在这种情况下,模型不会太关注输出内容的正确与否,而是更看重听起来正确或看起来合理,因此,以简单方式训练出的模型常常会产生幻觉。通过微调和人类反馈,我们可以显著减少幻觉的输出,但无法完全消除。免费模型带有较多幻觉