java分布式锁解决方案 redisson or ZooKeeper

redis 分布式锁

Redisson 是 redis 官方推荐的Java分布式锁第三方框架。

高效分布式锁

当我们在设计分布式锁的时候,我们应该考虑分布式锁至少要满足的一些条件,同时考虑如何高效的设计分布式锁,这里我认为以下几点是必须要考虑的。

1、互斥

在分布式高并发的条件下,我们最需要保证,同一时刻只能有一个线程获得锁,这是最基本的一点。

2、防止死锁

在分布式高并发的条件下,比如有个线程获得锁的同时,还没有来得及去释放锁,就因为系统故障或者其它原因使它无法执行释放锁的命令,导致其它线程都无法获得锁,造成死锁。

所以分布式非常有必要设置锁的有效时间,确保系统出现故障后,在一定时间内能够主动去释放锁,避免造成死锁的情况。

3、性能

对于访问量大的共享资源,需要考虑减少锁等待的时间,避免导致大量线程阻塞。

所以在锁的设计时,需要考虑两点。

1、锁的颗粒度要尽量小。比如你要通过锁来减库存,那这个锁的名称你可以设置成是商品的ID,而不是任取名称。这样这个锁只对当前商品有效,锁的颗粒度小。

2、锁的范围尽量要小。比如只要锁2行代码就可以解决问题的,那就不要去锁10行代码了。

4、重入

我们知道ReentrantLock是可重入锁,那它的特点就是:同一个线程可以重复拿到同一个资源的锁。重入锁非常有利于资源的高效利用。关于这点之后会做演示。

针对以上Redisson都能很好的满足,下面就来分析下它。

Redisson原理分析

为了更好的理解分布式锁的原理,我这边自己画张图通过这张图来分析。

1、加锁机制

线程去获取锁,获取成功: 执行lua脚本,保存数据到redis数据库。

线程去获取锁,获取失败: 一直通过while循环尝试获取锁,获取成功后,执行lua脚本,保存数据到redis数据库。

2、watch dog自动延期机制

这个比较难理解,找了些许资料感觉也并没有解释的很清楚。这里我自己的理解就是:

大家都知道,如果负责储存这个分布式锁的Redisson节点宕机以后,而且这个锁正好处于锁住的状态时,这个锁会出现锁死的状态。为了避免这种情况的发生,Redisson内部提供了一个监控锁的看门狗,它的作用是在Redisson实例被关闭前,不断的延长锁的有效期。默认情况下,看门狗的检查锁的超时时间是30秒钟,也可以通过修改Config.lockWatchdogTimeout来另行指定。

但在实际开发中会有下面一种情况:

      //设置锁1秒过期
        redissonLock.lock("redisson", 1);
        /**
         * 业务逻辑需要咨询2秒
         */
        redissonLock.release("redisson");

      /**
       * 线程1 进来获得锁后,线程一切正常并没有宕机,但它的业务逻辑需要执行2秒,这就会有个问题,在 线程1 执行1秒后,这个锁就自动过期了,
       * 那么这个时候 线程2 进来了。那么就存在 线程1和线程2 同时在这段业务逻辑里执行代码,这当然是不合理的。
       * 而且如果是这种情况,那么在解锁时系统会抛异常,因为解锁和加锁已经不是同一线程了。
       */

所以这个时候看门狗就出现了,它的作用就是 线程1 业务还没有执行完,时间就过了,线程1 还想持有锁的话,就会启动一个watch dog后台线程,不断的延长锁key的生存时间。

注意 正常这个看门狗线程是不启动的,还有就是这个看门狗启动后对整体性能也会有一定影响,所以不建议开启看门狗。

3、为啥要用lua脚本呢?

这个不用多说,主要是如果你的业务逻辑复杂的话,通过封装在lua脚本中发送给redis,而且redis是单线程的,这样就保证这段复杂业务逻辑执行的原子性

4、可重入加锁机制

Redisson可以实现可重入加锁机制的原因,我觉得跟两点有关:

1、Redis存储锁的数据类型是 Hash类型
2、Hash数据类型的key值包含了当前线程信息。

下面是redis存储的数据

img

这里表面数据类型是Hash类型,Hash类型相当于我们java的 <key,<key1,value>> 类型,这里key是指 ‘redisson’

它的有效期还有9秒,我们再来看里们的key1值为078e44a3-5f95-4e24-b6aa-80684655a15a:45它的组成是:

guid + 当前线程的ID。后面的value是就和可重入加锁有关。

举图说明

img

上面这图的意思就是可重入锁的机制,它最大的优点就是相同线程不需要在等待锁,而是可以直接进行相应操作。

具体demo 参考 java分布式锁终极解决方案之 redisson

5、Redis分布式锁的缺点

Redis分布式锁会有个缺陷,就是在Redis哨兵模式下:

客户端1 对某个master节点写入了redisson锁,此时会异步复制给对应的 slave节点。但是这个过程中一旦发生 master节点宕机,主备切换,slave节点从变为了 master节点。

这时客户端2 来尝试加锁的时候,在新的master节点上也能加锁,此时就会导致多个客户端对同一个分布式锁完成了加锁。

这时系统在业务语义上一定会出现问题,导致各种脏数据的产生

缺陷在哨兵模式或者主从模式下,如果 master实例宕机的时候,可能导致多个客户端同时完成加锁。

zk 分布式锁

zk 分布式锁,其实可以做的比较简单,就是某个节点尝试创建临时 znode,此时创建成功了就获取了这个锁;这个时候别的客户端来创建锁会失败,只能注册个监听器监听这个锁。释放锁就是删除这个 znode,一旦释放掉就会通知客户端,然后有一个等待着的客户端就可以再次重新加锁。

/**
 * ZooKeeperSession
 */
public class ZooKeeperSession {

    private static CountDownLatch connectedSemaphore = new CountDownLatch(1);

    private ZooKeeper zookeeper;
    private CountDownLatch latch;

    public ZooKeeperSession() {
        try {
            this.zookeeper = new ZooKeeper("192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181", 50000, new ZooKeeperWatcher());
            try {
                connectedSemaphore.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println("ZooKeeper session established......");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 获取分布式锁
     * 
     * @param productId
     */
    public Boolean acquireDistributedLock(Long productId) {
        String path = "/product-lock-" + productId;

        try {
            zookeeper.create(path, "".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
            return true;
        } catch (Exception e) {
            while (true) {
                try {
                    // 相当于是给node注册一个监听器,去看看这个监听器是否存在
                    Stat stat = zk.exists(path, true);

                    if (stat != null) {
                        this.latch = new CountDownLatch(1);
                        this.latch.await(waitTime, TimeUnit.MILLISECONDS);
                        this.latch = null;
                    }
                    zookeeper.create(path, "".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
                    return true;
                } catch (Exception ee) {
                    continue;
                }
            }

        }
        return true;
    }

    /**
     * 释放掉一个分布式锁
     * 
     * @param productId
     */
    public void releaseDistributedLock(Long productId) {
        String path = "/product-lock-" + productId;
        try {
            zookeeper.delete(path, -1);
            System.out.println("release the lock for product[id=" + productId + "]......");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 建立zk session的watcher
     * 
     *
     */
    private class ZooKeeperWatcher implements Watcher {

        public void process(WatchedEvent event) {
            System.out.println("Receive watched event: " + event.getState());

            if (KeeperState.SyncConnected == event.getState()) {
                connectedSemaphore.countDown();
            }

            if (this.latch != null) {
                this.latch.countDown();
            }
        }

    }

    /**
     * 封装单例的静态内部类
     *
     */
    private static class Singleton {

        private static ZooKeeperSession instance;

        static {
            instance = new ZooKeeperSession();
        }

        public static ZooKeeperSession getInstance() {
            return instance;
        }

    }

    /**
     * 获取单例
     * 
     * @return
     */
    public static ZooKeeperSession getInstance() {
        return Singleton.getInstance();
    }

    /**
     * 初始化单例的便捷方法
     */
    public static void init() {
        getInstance();
    }

}

也可以采用另一种方式,创建临时顺序节点:

如果有一把锁,被多个人给竞争,此时多个人会排队,第一个拿到锁的人会执行,然后释放锁;后面的每个人都会去监听排在自己前面的那个人创建的 node 上,一旦某个人释放了锁,排在自己后面的人就会被 zookeeper 给通知,一旦被通知了之后,就 ok 了,自己就获取到了锁,就可以执行代码了。

public class ZooKeeperDistributedLock implements Watcher {

    private ZooKeeper zk;
    private String locksRoot = "/locks";
    private String productId;
    private String waitNode;
    private String lockNode;
    private CountDownLatch latch;
    private CountDownLatch connectedLatch = new CountDownLatch(1);
    private int sessionTimeout = 30000;

    public ZooKeeperDistributedLock(String productId) {
        this.productId = productId;
        try {
            String address = "192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181";
            zk = new ZooKeeper(address, sessionTimeout, this);
            connectedLatch.await();
        } catch (IOException e) {
            throw new LockException(e);
        } catch (KeeperException e) {
            throw new LockException(e);
        } catch (InterruptedException e) {
            throw new LockException(e);
        }
    }

    public void process(WatchedEvent event) {
        if (event.getState() == KeeperState.SyncConnected) {
            connectedLatch.countDown();
            return;
        }

        if (this.latch != null) {
            this.latch.countDown();
        }
    }

    public void acquireDistributedLock() {
        try {
            if (this.tryLock()) {
                return;
            } else {
                waitForLock(waitNode, sessionTimeout);
            }
        } catch (KeeperException e) {
            throw new LockException(e);
        } catch (InterruptedException e) {
            throw new LockException(e);
        }
    }

    public boolean tryLock() {
        try {
            // 传入进去的locksRoot + “/” + productId
            // 假设productId代表了一个商品id,比如说1
            // locksRoot = locks
            // /locks/10000000000,/locks/10000000001,/locks/10000000002
            lockNode = zk.create(locksRoot + "/" + productId, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);

            // 看看刚创建的节点是不是最小的节点
            // locks:10000000000,10000000001,10000000002
            List<String> locks = zk.getChildren(locksRoot, false);
            Collections.sort(locks);

            if(lockNode.equals(locksRoot+"/"+ locks.get(0))){
                //如果是最小的节点,则表示取得锁
                return true;
            }

            //如果不是最小的节点,找到比自己小1的节点
      int previousLockIndex = -1;
            for(int i = 0; i < locks.size(); i++) {
        if(lockNode.equals(locksRoot + “/” + locks.get(i))) {
                    previousLockIndex = i - 1;
            break;
        }
       }

       this.waitNode = locks.get(previousLockIndex);
        } catch (KeeperException e) {
            throw new LockException(e);
        } catch (InterruptedException e) {
            throw new LockException(e);
        }
        return false;
    }

    private boolean waitForLock(String waitNode, long waitTime) throws InterruptedException, KeeperException {
        Stat stat = zk.exists(locksRoot + "/" + waitNode, true);
        if (stat != null) {
            this.latch = new CountDownLatch(1);
            this.latch.await(waitTime, TimeUnit.MILLISECONDS);
            this.latch = null;
        }
        return true;
    }

    public void unlock() {
        try {
            // 删除/locks/10000000000节点
            // 删除/locks/10000000001节点
            System.out.println("unlock " + lockNode);
            zk.delete(lockNode, -1);
            lockNode = null;
            zk.close();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }

    public class LockException extends RuntimeException {
        private static final long serialVersionUID = 1L;

        public LockException(String e) {
            super(e);
        }

        public LockException(Exception e) {
            super(e);
        }
    }
}

redis 分布式锁和 zk 分布式锁的对比

  • redis 分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能。
  • zk 分布式锁,获取不到锁,注册个监听器即可,不需要不断主动尝试获取锁,性能开销较小。

另外一点就是,如果是 redis 获取锁的那个客户端 出现 bug 挂了,那么只能等待超时时间之后才能释放锁;而 zk 的话,因为创建的是临时 znode,只要客户端挂了,znode 就没了,此时就自动释放锁。

redis 分布式锁大家没发现好麻烦吗?遍历上锁,计算时间等等……zk 的分布式锁语义清晰实现简单。

所以先不分析太多的东西,就说这两点,我个人实践认为 zk 的分布式锁比 redis 的分布式锁牢靠、而且模型简单易用。zk唯一的缺点就是就是需要额外部署zk server节点,引入了新的依赖。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值