DeepSeek R1/V3满血版——在线体验与API调用

前言:在人工智能的大模型发展进程中,每一次新模型的亮相都宛如一颗投入湖面的石子,激起层层波澜。如今,DeepSeek R1/V3 满血版强势登场,为大模型应用领域带来了全新的活力与变革。

本文不但介绍在线体验 DeepSeek R1/V3 满血版的强大交互功能,感受与大模型对话的奇妙魅力,还会深入到技术实操层面,手把手教你通过 API 调用该模型。

目录

一、在线体验DeepSeek R1/V3满血版

二、API调用DeepSeek R1/V3满血版

2.1 OpenAI兼容接口

 2.2 获取API KEY

2.3 与 chatbox 工具搭配使用


一、在线体验DeepSeek R1/V3满血版

首先登录蓝耘元生代智算云平台,如下链接 

https://cloud.lanyun.net/#/registerPage?promoterCode=11f606c51e

登录后,可以看见平台顶部栏的MaaS平台,点击进入MaaS平台

 进入MaaS平台后,如下界面,即可在线体验DeepSeek R1/V3满血版,点击如下图红框处即可自由切换DeepSeek R1与DeepSeek V3大模型。

你会发现与大模型的对话变得如此简单,即点即用,让你瞬间感受到 AI 的魅力。

二、API调用DeepSeek R1/V3满血版

### DeepSeek R1 V3 技术文档本特性 #### 架构改进 DeepSeek-V3 的基本架构仍然基于Transformer框架。为了提升推理效率并降低训练成本,该模型采用MLA(Multi-Head Latent Attention)和DeepSeekMoE架构,这些组件已经在前代产品DeepSeek-V2中得到验证[^3]。 #### 负载均衡优化 相较于之前的本,DeepSeek-V3引入了一种新的负载均衡策略——不依赖辅助损失来维持系统的平衡状态。这种改变有效缓解了传统方法可能带来的性能损耗问题。 #### 推理能力增强 通过一种创新的方法论,成功地将来自长链思考(Long Chain-of-Thought, CoT)模型中的逻辑推导能力和反思模式注入到标准LLM(大型语言模型),特别是针对DeepSeek-V3进行了优化处理。这不仅提升了其在复杂任务上的表现力,同时也保持了输出风格的一致性和可控长度[^1]。 #### 开源时间表 值得注意的是,在2025年初左右的时间节点上,除了正式发布的DeepSeek-R1之外,还有一个名为DeepSeek-R1-Zero的开源本同期推出给公众使用[^2]。 ```python # Python代码示例展示如何调用DeepSeek-V3 API进行简单查询 import requests def query_deepseek_v3(api_key, prompt): url = "https://api.deepseek.com/v3" headers = {"Authorization": f"Bearer {api_key}"} data = {"prompt": prompt} response = requests.post(url, json=data, headers=headers) if response.status_code == 200: return response.json() else: raise Exception(f"Error: {response.text}") # 使用说明:请替换下面API密钥为您自己的实际值,并设置想要询问的内容 result = query_deepseek_v3("your_api_key_here", "What is the weather like today?") print(result) ```
评论 94
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿齐Archie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值