flowers_mo 2024-11-15 09:49 采纳率: 11.1%
浏览 131

通过VMD代码计算的中心频率

通过以下代码进行VMD分解后,得到的中心频率omega为什么是0.几的值,我将其omegafs/(2pi);和图中的中心频率差别很大。

img

function [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol)
 
% Variational Mode Decomposition
 
% Authors: Konstantin Dragomiretskiy and Dominique Zosso
 
% zosso@math.ucla.edu --- http://www.math.ucla.edu/~zosso
 
% Initial release 2013-12-12 (c) 2013
 
%
 
% Input and Parameters:
 
% ---------------------
 
% signal  - the time domain signal (1D) to be decomposed
 
% alpha   - the balancing parameter of the data-fidelity constraint
 
% tau     - time-step of the dual ascent ( pick 0 for noise-slack )
 
% K       - the number of modes to be recovered
 
% DC      - true if the first mode is put and kept at DC (0-freq)
 
% init    - 0 = all omegas start at 0
 
%                    1 = all omegas start uniformly distributed
 
%                    2 = all omegas initialized randomly
 
% tol     - tolerance of convergence criterion; typically around 1e-6
 
%
 
% Output:
 
% -------
 
% u       - the collection of decomposed modes
 
% u_hat   - spectra of the modes
 
% omega   - estimated mode center-frequencies
 
%
 
% When using this code, please do cite our paper:
 
% -----------------------------------------------
 
% K. Dragomiretskiy, D. Zosso, Variational Mode Decomposition, IEEE Trans.
 
% on Signal Processing (in press)
 
% please check here for update reference:
 
%          http://dx.doi.org/10.1109/TSP.2013.2288675
 
 
 
 
%---------- Preparations
 
 
% Period and sampling frequency of input signal
 
save_T = length(signal);
 
fs = 1/save_T;
 
 
% extend the signal by mirroring
 
T = save_T;
 
f_mirror(1:T/2) = signal(T/2:-1:1);
 
f_mirror(T/2+1:3*T/2) = signal;
 
f_mirror(3*T/2+1:2*T) = signal(T:-1:T/2+1);
 
f = f_mirror;
 
 
% Time Domain 0 to T (of mirrored signal)
 
T = length(f);
 
t = (1:T)/T;
 
 
% Spectral Domain discretization
 
freqs = t-0.5-1/T;
 
 
% Maximum number of iterations (if not converged yet, then it won't anyway)
N = 500;
% For future generalizations: individual alpha for each mode
Alpha = alpha*ones(1,K);
% Construct and center f_hat
f_hat = fftshift((fft(f)));
f_hat_plus = f_hat;
f_hat_plus(1:T/2) = 0;
% matrix keeping track of every iterant // could be discarded for mem
u_hat_plus = zeros(N, length(freqs), K);
% Initialization of omega_k
omega_plus = zeros(N, K);
switch init
    case 1
        for i = 1:K
            omega_plus(1,i) = (0.5/K)*(i-1);
        end
    case 2
        omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K)));
    otherwise
        omega_plus(1,:) = 0;
end
% if DC mode imposed, set its omega to 0
if DC
    omega_plus(1,1) = 0;
end
% start with empty dual variables
lambda_hat = zeros(N, length(freqs));
% other inits
uDiff = tol+eps; % update step
n = 1; % loop counter
sum_uk = 0; % accumulator
% ----------- Main loop for iterative updates
while ( uDiff > tol &&  n < N ) % not converged and below iterations limit
     
    % update first mode accumulator
    k = 1;
    sum_uk = u_hat_plus(n,:,K) + sum_uk - u_hat_plus(n,:,1);
     
    % update spectrum of first mode through Wiener filter of residuals
    u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2);
     
    % update first omega if not held at 0
    if ~DC
        omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2);
 
    end
 
     
 
    % update of any other mode
 
    for k=2:K
 
         
 
        % accumulator
 
        sum_uk = u_hat_plus(n+1,:,k-1) + sum_uk - u_hat_plus(n,:,k);
 
         
 
        % mode spectrum
 
        u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2);
 
         
 
        % center frequencies
 
        omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2);
         
    end
     
    % Dual ascent
    lambda_hat(n+1,:) = lambda_hat(n,:) + tau*(sum(u_hat_plus(n+1,:,:),3) - f_hat_plus);
     
    % loop counter
    n = n+1;
     
    % converged yet?
    uDiff = eps;
    for i=1:K
        uDiff = uDiff + 1/T*(u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i))*conj((u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i)))';
 
    end
 
    uDiff = abs(uDiff);
 
     
 
end
 
 
 
%------ Postprocessing and cleanup
 
 
 
% discard empty space if converged early
 
N = min(N,n);
 
omega = omega_plus(1:N,:);
 
 
% Signal reconstruction
 
u_hat = zeros(T, K);
 
u_hat((T/2+1):T,:) = squeeze(u_hat_plus(N,(T/2+1):T,:));
 
u_hat((T/2+1):-1:2,:) = squeeze(conj(u_hat_plus(N,(T/2+1):T,:)));
 
u_hat(1,:) = conj(u_hat(end,:));
 
 
u = zeros(K,length(t));
 
 
for k = 1:K
 
    u(k,:)=real(ifft(ifftshift(u_hat(:,k))));
 
end
 
 
% remove mirror part
 
u = u(:,T/4+1:3*T/4);
 
 
% recompute spectrum
 
clear u_hat;
 
for k = 1:K
 
    u_hat(:,k)=fftshift(fft(u(k,:)))';
end
end

  • 写回答

1条回答 默认 最新

  • 趣享先生 全栈领域优质创作者 2024-11-15 09:55
    关注

    该回答参考ChatGPT,由吾为汝整理提供如若有用,还请题主采纳!

    在使用变分模态分解(VMD)进行信号处理时,得到的中心频率 $\omega$ 的值通常是以归一化的形式表示的,这可能导致你观察到的值在 $0$ 到 $0.5$ 之间。这个归一化是基于信号的采样频率和信号长度的。

    解释中心频率的计算

    1. 归一化频率:在代码中,频率的计算是基于归一化的频率范围 $[-0.5, 0.5]$。这意味着 $\omega$ 的值实际上是相对于采样频率的比例。具体来说,$\omega$ 的值是通过以下公式计算的:
      $$ \omega_k = \frac{1}{T} \sum_{f} |u_k(f)|^2 $$
      其中 $T$ 是信号的长度。

    2. 实际频率转换:如果你想将归一化频率转换为实际频率,可以使用以下公式:
      $$ f_k = \frac{\omega_k \cdot f_s}{2\pi} $$
      其中 $f_s$ 是信号的采样频率。

    3. 频率差异:如果你发现计算得到的中心频率与图中显示的中心频率有很大差别,可能是因为:

      • 你没有正确地将归一化频率转换为实际频率。
      • 图中显示的频率可能是以不同的单位或尺度表示的。

    解决方案

    为了更好地理解和比较这些频率,建议你:

    • 确认信号的采样频率 $f_s$。
    • 使用上述公式将归一化频率转换为实际频率。
    • 检查图中频率的单位和范围,确保它们与计算结果一致。

    如果你有具体的信号和参数设置,可以提供更多信息,我可以帮助你更详细地分析。

    评论

报告相同问题?

问题事件

  • 创建了问题 11月15日