图像分割UNet (1) : 网络结构讲解

本文详细介绍了UNet网络结构,该结构主要用于生物医学图像分割。UNet由编码器和解码器组成,通过下采样和上采样进行特征提取和重建。在编码器部分,通过卷积和池化操作逐层增大通道数并减小特征尺寸;解码器部分则利用转置卷积上采样,并结合跳跃连接进行特征融合,最后通过1x1卷积得到分割结果。原论文中存在输入图像大小与输出分割图大小的匹配问题,现代实现通常采用不改变尺寸的卷积和批量归一化层解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UNet 简介

UNet 论文:Convolutional Networks for Biomedical Image Segmentation

在这里插入图片描述
这篇论文主要是针对生物医学影像这个领域提出的,所以一提到UNet一般都会联想到医学影像。

UNet 网络结构

在这里插入图片描述
UNet它是一个encoder - decoder的结构,那么encoder对应就是这个u型网络左边这半部分,也就是我们特征提取及下采样这部分。decoder解码就是右边部分通过一系列上采样,我们得到最终的一个分割图。 对于网络结构左边这一侧,作者叫做contracting path,对于右边这一侧作者称为expansive path

在上图的网络结构中,每一个长条的矩形对应的都是一个特征层,其中箭头表示是一种操作。图中右下角列出了每一种箭头它所对应的操作类型。下面详细的介绍网络的搭建过程:

U型网络的左半部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值