一种基于模型残差的k均值聚类方法(电力线分股之二)

本文介绍了如何使用基于模型残差的改进k均值聚类方法来处理电力线分股问题,以克服DBSCAN聚类在参数调整上的困难。文章详细阐述了改进k均值的步骤,并提供了实现代码,但指出该方法对噪声去除能力有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

在之前的实验中(详细内容可以参看之前的文章:一种基于模型残差的密度聚类方法(电力线分股)),由于电力线之间残差分布可能较为紧密,如果使用DBSCAN进行聚类操作就会面临多次调参的情况,不容易进行使用,因此按照另一篇文章的思路使用改进的k均值聚类来进行残差点的聚类。

其中,改进的k均值聚类具体过程如下所示:
(1)随机生成的k个初始种子点;
(2)确定各个种子点之间的间距最小值 d m i n dmin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值