Matlab 双目相机标定(内置函数)

本文详细介绍了Matlab中双目标定的原理和步骤,包括单目相机标定的基础知识,如何构建并求解约束最小二乘问题以获取投影矩阵P,以及如何处理径向和切向畸变。此外,还提及了双目相机标定的差异,即需要确定两相机间的相对位姿关系。最后,提供了实现代码和效果展示的链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

1.1单目相机标定

与单目相机标定类似,双目标定的目的也是要找到从世界坐标转换为图像坐标所用到的投影P矩阵各个系数(即相机的内参与外参)。具体过程如下所述:

1、首先我们需要获取一个已知图形的图像(这里我们使用MATLAB所提供的数据)。

2、找到同名像点(匹配点),这里主要是探测黑白格子之间的角点。

3、构建方程。

展开这个等式就可以表示为:

### 关于VisionPro相机标定的解决方案 在工业视觉领域,相机标定是实现多视角图像处理和三维重建的重要步骤。VisionPro作为康耐视公司的一款强大工具,提供了多种标定方法以满足不同应用场景的需求[^3]。以下是关于VisionPro相机标定的详细解决方案: #### 1. 标定板的选择与准备 标定的第一步是选择合适的标定板。标定板通常包含已知几何结构的图案(如棋盘格或圆点阵列),这些图案能够被算法识别并用于计算相机的内参和外参。对于相机系统,建议使用较大的标定板以覆盖两个相机的视野范围,并确保足够的重叠区域[^3]。 ```python # 示例代码:加载标定板图像 import cv2 calibration_image = cv2.imread('calibration_board.png') gray = cv2.cvtColor(calibration_image, cv2.COLOR_BGR2GRAY) ``` #### 2. 相机内参标定 每个相机都需要单独进行内参标定,包括焦距、主点偏移和畸变系数等参数。VisionPro提供了一个图形化的界面来简化这一过程。用户只需按照提示拍摄多张标定板的不同角度图像即可完成标定[^3]。 #### 3. 相机相对位置标定 相机标定的核心在于确两台相机之间的相对位置和姿态(即旋转矩阵和平移向量)。这一步可以通过以下方式实现: - 使用同一块标定板,在两台相机的视野范围内同时采集图像。 - 利用VisionPro的标定工具,输入标定板的实际尺寸和检测到的角点坐标,自动计算出两台相机的相对关系[^3]。 ```python # 示例代码:计算相机间的本质矩阵 import numpy as np points1 = np.array([...]) # 第一台相机检测到的角点 points2 = np.array([...]) # 第二台相机检测到的角点 essential_matrix, _ = cv2.findEssentialMat(points1, points2, cameraMatrix) ``` #### 4. 系统校验与优化 完成标定后,需要对系统进行校验以确保精度。可以使用一组测试图像,通过重新投影误差评估标定结果的质量。如果误差较大,可能需要调整标定板的位置或增加拍摄角度。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值