基于LSTM-Transformer混合架构的高频Tick数据特征工程

一、架构设计原理与组件协同机制

在金融高频交易场景中,3秒级的Tick数据具有典型的时序连续性与瞬态突变双重特性。本文提出的LSTM-Transformer混合模型通过双向门控循环单元捕获局部依赖关系,结合自注意力机制实现跨时段的特征交互。具体而言,底层采用双层BiLSTM结构对原始价格序列进行相位对齐编码,其输出隐状态向量作为中层CrossAttention模块的关键输入源。该注意力层配置8个头部并行计算不同时间尺度下的相关性权重,配合残差连接缓解梯度消失问题。上层部署轻量化Pointwise FeedForward Network完成非线性变换,最终通过全连接层映射至预测目标空间。这种层级化设计既保留了RNN对细粒度模式的敏感性,又发挥了Transformer在长程关联建模上的优势。

import torch.nn as nn
class LSTMTranHybrid(nn.Module)
### LSTMTransformer混合模型的设计结构 LSTMTransformer 的结合旨在利用两者的优点,从而提升处理时间序列数据的能力。通过集成一个 LSTM 层到 Transformer 模型中,可以增强其对时间依赖性的建模能力[^1]。 #### 改进后的模型架构描述 改进后的 **LSTM-Transformer** 模型通常具有以下特点: 1. **输入层中的LSTM模块** 在模型的输入阶段引入了一个 LSTM 层,用于捕捉时间序列数据的时间特性并提取特征。这一设计使得模型能够更好地理解上下文关系以及长期依赖性。 2. **Transformer编码器部分** 经过 LSTM 处理的数据随后被送入 Transformer 的编码器组件。此部分负责进一步学习复杂的模式并通过多头自注意力机制捕获全局关联。 3. **整体流程概述** 数据先经过 LSTM 进行初步的时间维度上的特征抽取;接着这些特征作为输入传递给 Transformer 编码器,在那里完成更深层次的信息融合和表示构建工作。最后由解码器生成目标输出或者预测结果。 虽然具体的图形展示未直接提供,但从上述文字说明可以看出该混合模型大致遵循这样的顺序连接方式:`LSTM -> Transformer Encoder/Decoder`. 以下是基于以上理论的一个简化实现框架示例代码片段: ```python import tensorflow as tf from tensorflow.keras.layers import Input, LSTM, Dense, Embedding, MultiHeadAttention, LayerNormalization, Dropout from tensorflow.keras.models import Model def lstm_transformer_model(input_dim, output_dim, d_model=512, num_heads=8, ff_dim=2048, dropout_rate=0.1): inputs = Input(shape=(None,)) # LSTM layer for time-series feature extraction x = Embedding(input_dim=input_dim, output_dim=d_model)(inputs) x = LSTM(d_model, return_sequences=True)(x) # Positional Encoding (can be added here or separately defined function) seq_length = tf.shape(x)[1] pos_encoding = positional_encoding(seq_length, d_model) x += pos_encoding[:seq_length] # Transformer encoder layers with multi-head attention and feed-forward networks for _ in range(6): # Example number of transformer blocks attn_output = MultiHeadAttention(num_heads=num_heads, key_dim=d_model//num_heads)(x, x) x = Dropout(dropout_rate)(attn_output) x = LayerNormalization()(x + attn_output) ffn_output = Dense(ff_dim, activation='relu')(x) ffn_output = Dense(d_model)(ffn_output) x = Dropout(dropout_rate)(ffn_output) x = LayerNormalization()(x + ffn_output) outputs = Dense(output_dim, activation='softmax')(x) model = Model(inputs=[inputs], outputs=[outputs]) return model ``` 注意这段伪代码仅作示意用途,并不完全适用于实际部署环境下的所有情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python自动化工具

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值