第六章 DIKW 金字塔模型

文章探讨了DIKW金字塔模型,解释了数据、信息、知识和智慧之间的关系,并指出AI正从基于数据向基于知识发展,通过专家系统和深度学习等方法提升智能水平。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一章 道法术器

第二章 道天地将法

第三章 工具和方法

第四章 抽象的力量

第五章 结构与系统

第六章 DIKW金字塔模型


目录

前言

一、信息

二、知识

 三、智慧

总结


前言


全文2000字,预计阅读时长:8分钟

读者:程序员、架构师、管理者
 

本文根据DIKW金字塔模型,主要讲述了数据、信息、知识、智慧本质、意义、区别和联系。

一、概述


DIKW金字塔模型由托马斯·斯特尔那斯·艾略特提出的体系

DIKW体系就是关于数据、信息、知识及智慧的体系,其中每一层比下一层赋予某些特质,数据层是最基本的,信息层加入内容,知识层加入“如何去使用”,智慧层加入“什么时候才用”。

afabc52743b642c6aa0b4814127422e9.jpg

二、主要内容


1.数据

数据,是原始素材;

数据,是

2.信息


信息,是加工处理后有逻辑的数据;

信息,是

3、知识


定义:信息整理组合;

知识结构:基础知识、专业知识、工具知识(方法论)、综合知识

知识,是有组织的信息;

知识,是

4、智慧


智慧,是知识的应用;

智慧,是

三、应用


DIKW体系透过以下的步骤来协助研究及分析:

原始观察及量度获得了资料。

分析资料间的关系获得了资讯。这些资讯可以回答简单问题,譬如:谁?什么?哪里?什么时候?为什么?资讯是信息,意味著有听众及目的。

在行动上应用资讯产生了知识。知识可以回答“如何?”的问题。知识是一些可行的关系及习惯工作方式。

透过智者间的沟通及自我反省而利用知识会产生了智慧。我们可以利用智慧解答关于行动的为什么及什么时候的问题。智慧是关心未来。它含有暗示及滞后影响的意味

参考


《岩石》、《未来主义者》

DIKW模型 - MBA智库百科 (mbalib.com)

DIKW模型(Data-to-Information-to-Knowledge-to-Wisdom Model)DIKW模型是一个可以很好的帮助我们理解数据(Data)、信息(Information)、知识(Knowledge)和智慧(Wisdom)之间的关系的模型,这个模型还向我们展现了数据是如何一步步转化为信息、知识、乃至智慧的方式。

DIKW金字塔,AI爬到第几层了? (baidu.com)

你可能没听说过DIKW金字塔,但你一定曾被按在这座塔的鄙视链上摩擦过。

曾有某个游戏主播形容自己的预判:观众只看到了第二层,想到了第一层,实际上我在第五层。于是,网友们形容一些让人意想不到的操作,“这波啊,这波是在大气层”。

这种说法虽然有些戏谑,但还真有点科学道理。

DIKW金字塔,是一个关于人类理解、推理和解释的层次结构,分别是:数据(原始的事实集合)、信息(可被分析测量的结构化数据)、知识(需要洞察力和理解力进行学习)、智慧(指导行动)。

站在DIKW金字塔尖的人,相当于全部通关的顶级选手,掌握了数据、整理成信息、理解为知识、转化成智慧,才能让行动如有神助。足智多谋如诸葛亮,锦囊妙计用的那叫一个信手拈来,绝对是“站在大气层的男人”。

DIKW金字塔适用于人,也适用于AI吗?答案是肯定的。

如果AI也有鄙视链,那么基于数据的AI,一定会被基于知识的AI碾压。

这是因为,AI Is A Knowledge Technology,AI就是一种由知识驱动的技术。因此,从初级人工智能向高级人工智能、通用人工智能发展的过程,也是一个攀爬DIKW金字塔的过程。

近年来,AI领域的诸多学术力量、产业力量,从强调“数据出奇迹”的蛮力计算,向着“知识金字塔”的更高层级进发,推动知识计算引领AI应用的未来潮流。

可以说,我们正处于一个向基于知识的AI过渡的关键阶段。AI已经影响着你我生活的方方面面,所以有必要来聊一聊,AI沿着DIKW金字塔向上攀爬,将会带来怎样的变化?

回归的钟摆:理性主义的复兴

将知识运用在机器智能当中,并不是什么新鲜事。早在上个世纪,人类就开始了探索知识计算的步伐,并广泛应用到工作和生活当中。

AI诞生的那一刻起,就是理性主义和经验主义两大流派的交相辉映、此消彼长。它们的共同之处,都认为机器智能首先要拥有知识,知识是智能的核心;分歧在于,对于知识的理解和获取途径不同。

而伴随着这两大流派的发展,知识与AI的结合,也就表现为两种方式。

一种是理性主义的结合,人提供知识,机器负责计算。

理性主义认为人的智能是先天遗传的,要实现机器智能,就要理解人脑的运行机制,将这个东西总结成知识,再由人来告诉机器怎么做。

典型应用就是专家系统。

人类专家总结出知识,计算机根据专家系统知识库进行学习,这种方式可解释性非常高。从1968年世界上第一个专家系统——化学专家系统DENDRAL研制成功之后,针对某个单一领域、模仿专家进行推理分析的早期专家系统开始流行起来,广泛应用于工农业、医疗、气象、交通、军事等众多产业计算场景之中。

不过,专家机只能在一些特定领域发挥作用,建构成本非常高。并且,受限于专家的认知上限,如果人都没有找到那个知识,或者表述不出来的话,机器就更不可能学会了。

于是从九十年代到现在,另一种AI与知识的结合模式就占据了主流,那就是经验主义。

由人手工打造一个分类器,开发人员不必提前知道答案,机器可以不依赖那些人类专家描述不出来、“只可意会不可言传”的知识,按照自己的运作机制,从数据中来挖掘知识,通过大规模数据训练出模型参数,表现出超过人类的智能。

最具代表性的就是深度学习。

依靠强大的数据、算力和神经网络,谷歌大脑可以不需要人类的帮助,在不知道“猫”这个词的前提下,通过训练将数据转化为知识,看过数百万张图片后,自己提炼出猫的基本特性,知道猫是一种毛茸茸的(此处省略一堆形容词)生物,然后成功在一堆照片中识别出猫。

总结


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

书香度年华

创作不易

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值