代谢组数据分析(九):代谢物与临床指标的相关性分析(spearman)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
在这里插入图片描述

介绍

在代谢组学研究中,探究代谢物与临床指标之间的相关性是揭示疾病机制和发现潜在生物标志物的关键步骤。通常,为了解析哪些代谢物与特定疾病存在关联,研究者会采用统计方法来量化这种相关性。Spearman相关系数是一种常用的非参数统计方法,适用于评估两个变量之间的等级相关性,即使数据不满足正态分布或线性关系不明显的情况。

Spearman相关系数的计算基于变量的等级而非实际值,它测量了两个变量的等级之间的单调性关系。如果两个变量的等级呈现出单调递增或递减的关系,它们的Spearman系数将接近+1或-1,表明强正相关或强负相关;如果接近0,则表明没有明显的相关性。

进行代谢物与临床指标的相关性分析时,研究者首先会收集相应的代谢组数据和临床指标数据,然后对数据进行适当的预处理,包括数据清洗、标准化等步骤。接下来,利用Spearman相关系数对每一对代谢物和临床指标进行相关性评估。通过设置显著性水平(如p < 0.05),可以

### 计算两条曲线之间相关性的方法 在 Origin 中计算两条曲线之间的相关性可以通过多种方式进行,具体取决于所使用的版本以及数据的具体情况。一种常用的方法是通过线性拟合来评估两数据间的关联程度。 对于已有的 FPR 和 TPR 数据,在 Origin 中可以先导入这些数据并创建相应的散点图或折线图[^1]。为了进一步分析这两条曲线间的关系,可以选择执行 Pearson 或 Spearman 相关系数测试: - **Pearson 相关系数**衡量两个变量之间的线性依赖强度; - **Spearman 秩相关系数**则用于检测单调关系而不必然是线性的。 #### 使用内置函数计算相关性 Origin 提供了一个方便的功能来进行此类统计检验。以下是具体的实现方式: 1. 将 FPR 和 TPR 的数值分别放入不同的列中作为 X 轴和 Y 轴的数据源; 2. 选中这两个列之后右键点击选择 `Statistics` -> `Descriptive Statistics` -> `Correlation Coefficient...`; 3. 在弹出窗口内设置选项,包括选择要比较的两列数据及其对应的相关性度量标准(如 Pearson 或 Spearman),最后点击 OK 完成操作; ```matlab // 这里提供一段伪代码表示如何调用OriginLab中的命令行接口进行相关性分析 origin.Run.Line("stats.correlate -b (col(1), col(2))"); ``` 上述过程会自动生成一个报告表格展示两者之间的皮尔逊积矩相关系数 r 值以及其他相关信息,从而帮助理解给定条件下 ROC 曲线下面积 AUC 所代表的意义之外更深层次的信息关于模型性能差异等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值