介绍
人类的认知能力在于我们适应不同环境和情况的能力。然而,驱动适应性行为的机制主要是在孤立的非社会环境和社会环境中分别进行研究的,而一个整合性的框架却一直难以形成。在此,我们利用虚拟的《我的世界》(Minecraft)环境中的一项集体觅食任务来整合这两个领域,通过利用视觉环境数据的自动转录以及高分辨率的空间轨迹来进行。我们的行为分析捕捉到了社会互动的结构和时间动态,然后通过计算模型依次预测每次觅食行为来进行直接测试。决定。这些结果表明,无论是非社会性觅食行为还是选择性社会学习行为的适应机制,都是由个体觅食的成功程度所驱动(而非社会因素所致)。此外,非社会性和社会性学习的适应性程度才是最能预测个体表现的因素。这些发现不仅将跨非社会领域和社会领域的理论整合了起来,而且还为人类在复杂且动态的社会环境中决策的适应性提供了关键见解。
Human cognition is distinguished by our ability to adapt to different environments and circumstances. Yet the mechanisms driving adaptive behavior have predominantly been studied in separate asocial and social contexts, with an integrated framework remaining elusive. Here, we use a collective foraging task in a virtual Minecraft environment to integrate these two fields, by leveraging automated transcriptions of visual field data combined with high-resolution spatial trajectories. Our behavioral analyses capture both the structure and temporal dynamics of social interactions, which are then directly tested using computational models sequentially predicting each foraging decision. These results reveal that adaptation mechanisms of both asocial foraging and selective social learning are driven by individual foraging success (rather than social factors). Furthermore, it is the degree of adaptivity—of both asocial and social learning—that best predicts individual performance. These findings not only integrate theories across asocial and social domains, but also provide key insights into the adaptability of human decision-making in complex and dynamic social landscapes.
代码
http://github.com/charleywu/minecraftforaging
参考
- Adaptive mechanisms of social and asocial learning in immersive collective foraging (沉浸式集体觅食中的社会性和非社会性学习的适应性机制)
- http://github.com/charleywu/minecraftforaging