单细胞数据分析(五):三种整合单细胞数据(Harmony、fastMNN、SCTransform)的完整流程

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
在这里插入图片描述

介绍

单细胞RNA测序(scRNA-seq)技术的快速发展为研究细胞异质性、发育轨迹和疾病机制提供了前所未有的分辨率。然而,整合来自不同实验批次或研究的数据集时,批次效应(batch effect)会引入技术变异,掩盖真实的生物学差异。针对这一问题,目前主流的三种整合方法——Harmony、fastMNN和SCTransform——各有优势和适用场景。

本文以一篇乳腺癌单细胞研究(A comprehensive single-cell breast tumor atlas…)的23万细胞数据集为例,系统比较了这三种方法的原理、内存消耗、计算效率和整合效果。该数据集整合了8项独立研究,存在显著的批次差异,是检验整合方法的理想案例。

Harmony通过PCA空间的软聚类和线性变换实现快速批次校正,内存占用最低(推荐64GB),适合超大规模数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值