禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
文章目录
介绍
随着单细胞测序与大规模群体遗传数据的发展,如何整合不同来源、不同群体、不同性别的变异数据,识别出具有临床显著性的候选基因,成为精神疾病和神经疾病研究的重要方向。
本教程将基于一个真实的大型精神分裂症遗传研究(SCHEMA)的分析框架,讲解如何在R语言中:
- 整理多种variant class(如PTV、MPC2等)对应的突变数据
- 进行分层统计检验(CMH检验、Fisher检验)
- 融合 de novo 突变分析结果
- 最终输出具有跨人群统计显著性的候选基因列表,并进行可视化展示(Volcano plot)
教程不仅展示了如何完成全流程的变异整合与分析,还为读者提供了一个可以拓展的框架,可用于其他复杂表型或疾病研究。
结构简览
- 背景数据准备
- 样本数量设定(不同性别、不同人群)
- 数据读取与分组(variant class:PTV / MPC)
- 数据整形与NA处理