【数据分析】跨群体多层次罕见变异Meta分析与整合方法:基于SCHEMA框架的实用R指南

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
在这里插入图片描述

介绍

随着单细胞测序与大规模群体遗传数据的发展,如何整合不同来源、不同群体、不同性别的变异数据,识别出具有临床显著性的候选基因,成为精神疾病和神经疾病研究的重要方向。

本教程将基于一个真实的大型精神分裂症遗传研究(SCHEMA)的分析框架,讲解如何在R语言中:

  • 整理多种variant class(如PTV、MPC2等)对应的突变数据
  • 进行分层统计检验(CMH检验、Fisher检验)
  • 融合 de novo 突变分析结果
  • 最终输出具有跨人群统计显著性的候选基因列表,并进行可视化展示(Volcano plot)

教程不仅展示了如何完成全流程的变异整合与分析,还为读者提供了一个可以拓展的框架,可用于其他复杂表型或疾病研究。

结构简览

  1. 背景数据准备
  • 样本数量设定(不同性别、不同人群)
  • 数据读取与分组(variant class:PTV / MPC)
  1. 数据整形与NA处理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值