Thursday, November 30, 2017

Kolmogorov Complexity and the Primes

Bill's post on how to derive the non-finiteness of the primes from Van der Waerden's theorem reminds me of a nice proof using Kolmogorov complexity.

A quick primer: Fixed some universal programming language. Let C(x), the Kolmogorov complexity of x, be the length of the smallest program that outputs x. One can show by a simple counting argument for every n there is an x such that C(x) ≥ n. We call such x "random".

Suppose we had a finite list of primes p1…pk. Then any number m can be expressed as p1e1···pkek. Pick n large, a random x of length n and let m be the number x expresses in binary. We can compute m from e1,…,ek and a constant amount of other information, remembering that k is a constant. Each ei is at most log m and so we can describe all of them in O(log log m) bits and thus C(m) = O(log log m). But roughly C(m) = C(x)  ≥  n = log m, a contradiction.

But we can do better. Again pick n large, a random x of length n and let m be the number x expresses in binary. Let pi be the largest prime that divides m where pi is the ith prime. We can describe m by pi and m/pi, or by i and m/pi. So we have C(m) ≤ C(i,m/pi) ≤ C(i) + C(m/pi) + 2 log C(pi) ≤ log i + log m/pi + 2 log log i + c. The 2 log C(pi) term is needed to specify the separation between the program for i and the program for m/pi.

Since C(m) ≥ log m, we have
log m ≤ log i + log (m/pi)+ 2 log log i + c
log m ≤ log i + log m - log pi + 2 log log i + c
log pi ≤ log i + 2 log log i + c
pi ≤ O(i (log i)2)

The prime number theorem has pi approximately i log i, so we get just a log factor off from optimal with simple Kolmogorov complexity.

I wrote a short introduction to Kolmogorov complexity with this proof. I originally got the proof from the great text on Kolmogorov complexity from Li and Vitányi and they give credit to Piotr Berman and John Tromp.

Monday, November 27, 2017

Van der Waerden's theorem implies the infinitude of the primes


(Sam Buss and Denis Hirschfeld helped me on this post.)

I was reading the table of contents of the American Math Monthly and saw an article by Levent Alpoge entitled

Van der Waerden and the primes

in which he showed from VDW's theorem that the set of primes is infinite. The article is  here and here. My writeup of it is here.  Prof K saw me reading the paper.

 K: I see you are interested in proving the set of primes is infinite from VDW's theorem.

BILL: Yes, who wouldn't be!!!!

 K: Well, lots of people. Including me. Can't you just state VDW's theorem and then give the normal proof? Would that count? Besides, we already have an easy proof that the set of primes is  infinite without using VDW's theorem.

I turn K's comments  into a valid question:  What does it mean to prove A from B if A is already known?

 There are two issues here, informal and formal.

Informally:  If you look at the proof of VDW-->primes infinite the steps in that proof look easier than than the usual proof that the set of primes is infinite. And the proof is certainly different. If you read the paper you will see that I am certainly not smuggling in the usual proof. Also, the proof truly does use VDW's theorem.

Formally one could (and people working in Reverse Mathematics do similar things- see the books Subsystems of Second order Arithmetic by Simpson,, and  Slicing the Truth, reviewed here) devise a weak axiom system that itself cannot prove the set of Primes is Infinite, but can prove the implication VDW-->Primes infinite.  Note that Reverse Mathematics does this sort of thing, but for proofs involving infinite objects, nothing like what I am proposing here.

Open Problem 1: Find a proof system where the implication VDW-->Primes infinte can be proven, but primes infinite cannot. Sam Buss pointed out to me that for the weak system IΔ0 it is not known if it can prove the primes are infinite.

Open Problem 2: Find a proof system where you can do both proofs, but the prove of the implication is much shorter. Perhaps look at (VDW--> there are at least n primes) and (there are at least n primes)
and look at the length of proof as a function of n.

Open Problem 3: The statement there are no primes with  n bits, the with leading bit 1 can be expressed as a propositional statement. Get lower bounds on its refuation in (say) resolution. (A commenter pointed out an error in a prior version of this one so be wary- there may be an error here as well.)

I am suggesting work on the reverse mathematics of systems much weaker than RCA0. I do not know if this is a paper, a PhD thesis, a career, a dead end, or already pretty much done but I am not aware of it.


Monday, November 20, 2017

The Grad Student Tax

By now as you've read from Luca or Scott or PhD Comics or a variety of other sources on the dangerous changes to the tax code that passed the US House of Representatives last week. Among a number of university unfriendly policies, the tax code will eliminate the tax exemption for graduate student tuition for students supported with teaching or research duties, nearly every PhD student in STEM fields. The CRA, ACM, IEEE, AAAI, SIAM and Usenix put out a joint statement opposing this tax increase on graduate students. This is real.

Without other changes, a tax on tuition will make grad school unaffordable to most doctoral students. In computer science where potential PhD students can typically get lucrative jobs in industry, we'll certainly see a precipitous drop in those who choose to continue their studies. Universities will have to adjust by lower tuition, if finances and state law allows, and raising stipends. US government science funding will at best remain flat so in almost any scenario we'll see far fewer students pursue PhD degrees particularly in CS and STEM fields. Keep in mind we already don't come close to producing enough CS PhD students entering academia to meet the dramatically growing demand and these moves could frustrate faculty who also might head off to industry.

The current senate proposal leaves the exemption in place though no one can predict what will happen the the two bills get reconciled. In the best case scenario this bill goes the same way as the failed health care reform but republicans seem desperate to pass something major this fall. So reach out to your representatives, especially your senators, and express the need to leave in the exemption.

Thursday, November 16, 2017

A Tale of Three Rankings

In the Spring of 2018 the US News and World Report should release their latest rankings of US graduate science programs including computer science. These are the most cited of the deluge of computer science rankings we see out there. The US News rankings have a long history and since they are reputation based they roughly correspond to how we see CS departments though some argue that reputation changes slowly with the quality of a department.

US News and World Report also has a new global ranking of CS departments. The US doesn't fare that well on the list and the ranking of the US programs on the global list are wildly inconsistent with the US list. What's going on?

75% of the global ranking is based on statistics from Web of Science. Web of Science captures mainly journal articles where conferences in computer science typically have a higher reputation and more selectivity. In many European and Asian universities hiring and promotion often depend heavily on publications and citations in Web of Science encouraging their professor to publish in journals thus leading to higher ranked international departments.

The CRA rightly put out a statement urging the CS community to ignore the global rankings, though I wished they made a distinction between the two different US News rankings.

I've never been a fan of using metrics to rank CS departments but there is a relatively new site, Emery Berger's Computer Science Rankings, based on the number of publications in major venues. CS Rankings passes the smell test for both their US and global lists and is relatively consistent with the US News reputation-based CS graduate rankings.

Nevertheless I hope CS Rankings will not become the main ranking system for CS departments. Departments who wish to raise their ranking would hire faculty based mainly on their ability to publish large number of papers in major conferences. Professors and students would then focus on quantity of papers and this would in the long run discourage risk-taking long-range research, as well as innovations in improving diversity or educating graduate students.

As Goodhart's Law states, "when a measure becomes a target, it ceases to be a good measure". Paradoxically CS Rankings can lead to good rankings of CS departments as long as we don't treat it as such.

Monday, November 13, 2017

Can you measure which pangrams are natural

A Pangram is a sentence that contains every letter of the alphabet

The classic is:

                                      The quick brown fox jumps over the lazy dog.

(NOTE- I had `jumped' but a reader pointed out that there was no s, and that `jumps' is the correct word)

which is only 31 letters.

I could give a pointer to lists of such, but you can do that yourself.

My concern is:

a) are there any pangrams that have actually been uttered NOT in the context of `here is a pangram'

b) are there any that really could.

That is- which pangrams are natural?  I know this is an ill defined question.

Here are some candidates for natural pangrams

1) Pack my box with five dozen liquor jugs

2) Amazingly few discotheques provide jukeboxes

3) Watch Jeopardy! Alex Trebek's fun TV quiz game

4) Cwm fjord bank glyphs vext quiz
(Okay, maybe that one is not natural as it uses archaic words. It means
``Carved symbols in a mountain hollow on the bank of an inlet irritated an
eccentric person'  Could come up in real life. NOT. It uses every letter
exactly once.)

How can you measure how natural they are?

For the Jeopardy one I've shown it to people and asked them

``What is unusual about this new slogan for the show Jeopardy?''

and nobody gets it. more important- they believe it is the new slogan.

So I leave to the reader:

I) Are the other NATURAL pangrams?

II) How would you test naturalness of such?

Pinning down `natural' is hard. I did a guest post in 2004 before I was an official co-blogger, about when a problem (a set for us) is natural, for example the set all regular expressions with squaring (see here).

Thursday, November 09, 2017

Advice for the Advisor

A soon-to-be professor asked me recently if I could share some ideas on on how to advise students. I started to write some notes only to realize that I had already posted on the topic in 2006.
Have students work on problems that interest them not just you. I like to hand them a proceedings of a recent conference and have them skim abstracts to find papers they enjoy. However if they stray too far from your research interests, you will have a hard time pushing them in the right directions. And don't work on their problems unless they want you to.
Keep your students motivated. Meet with them on a regular basis. Encourage students to discuss their problems and other research questions with other students and faculty. Do your best to keep their spirits high if they have trouble proving theorems or are not getting their papers into conferences. Once they lose interest in theory they won't succeed.
Feel free to have them read papers, do some refereeing and reviewing, give talks on recent great papers. These are good skills for them to learn. But don't abuse them too much.
Make sure they learn that selling their research is as important as proving the theorems. Have them write the papers and make them rewrite until the paper properly motivates the work. Make them give practice talks before conferences and do not hold back on the criticism.
Some students will want to talk about some personal issues they have. Listen as a friend and give some suggestions without being condescending. But if they have a serious emotional crisis, you are not trained for that; point them to your university counseling services.
Once it becomes clear a student won't succeed working with you, or won't succeed as a theorist or won't succeed in graduate work, cut them loose. The hardest thing to do as an advisor is to tell a student, particular one that tries hard, that they should go do something else. It's much easier to just keep them on until they get frustrated and quit, but you do no one any favors that way.
Computer science evolves dramatically but the basic principles of advising don't. This advise pretty much works now as well as it did in 2006, in the 80's when I was in the student or even the 18th century. Good advising never goes out of style.

Of course I don't and can't hand out a physical proceedings to a student to skim. Instead I point to on-line proceedings but browsing just doesn't have the same feel.

Looking back I would add some additional advice. Push your students and encourage them to take risks with their research. If they aren't failing to solve their problems, they need to try harder problems. We too often define success by having your paper accepted into a conference. Better to have an impact on what others do.

Finally remember that advising doesn't stop at the defense. It is very much a parent-child relationship that continues long after graduation. Your legacy as a researcher will eventually come to an end. Your legacy as an advisor will live on through those you advise and their students and so on to eternity.

Monday, November 06, 2017

The two fears about technology- one correct, one incorrect


When the luddites smashed loom machines their supporters (including Lord Byron, Ada Lovelaces father) made two arguments in favor of the luddites (I am sure I am simplifying what they said):

  1. These machines are tossing people out of work NOW and this is BAD for THOSE people. In this assertion they were clearly correct. (`lets just retrain them' only goes so far).
  2. This is bad for mankind! Machines displacing people will lead to the collapse of civilization! Mankind will be far worse off because of technology. In this assertion I think they were incorrect. That is, I think civilization is better off now because of technology. (If you disagree leave an intelligent polite comment. Realize that just be leaving a comment you are using technology. That is NOT a counterargument. I don't think its even IRONY. Not sure what it is.) 
  3. (This third one is mine and its more of a question) If you take the human element out of things then bad things will happen. There was a TV show where a drone was going to be dropped on something but a HUMAN noticed there were red flowers on the car and deduced it was a wedding so it wasn't dropped. Yeah! But I can equally well see the opposite: a computer program notices things that indicate its not the target that a person would have missed. But of course that would make as interesting a story. More to the point- if we allow on computers to make decisions without the human elemnet, is that good or bad? For grad admissions does it get rid of bias or does it reinforce bias? (See the book Weapons of Math Destruction for an intelligent argument against using programs for, say, grad admissions and other far more important things.)
I suspect that the attitude above greeted every technology innovation. For AI there is a similar theme but with one more twist: The machines will eventually destroy us! Bill Gates and Steven Hawkings have expressed views along these lines.

When Deep Blue beat Kasparov in chess there were some articles about how this could be the end of mankind. That's just stupid. For a more modern article on some of the dangers of AI (some reasonable some not) see this article on watson.

It seems to me that AI can do some WELL DEFINED (e.g., chess) very well, and even some not-quite-so-well-defined things (Nat Lang translation) very well, but the notion that they will evolve to be `really intelligent' (not sure that is well defined) and think they are better than us and destroy us seems like bad science fiction (or good science fiction).

Watson can answer questions very very well, Medical diagnosis machines may well be much better than doctors. While this may be bad news for Ken Jennings and for doctors, I don't see it being bad for humanity in the long term. Will we one day look at the fears of AI and see that they were silly--- the machines did not, terminator-style, turn against us? I think so. And of course I hope so.
  


Thursday, November 02, 2017

Matching and Complexity

Given a group of people, can you pair them up so that each pair are Facebook friends with each other? This is the famous perfect matching problem. The complexity of matching has a rich history which got a little richer in the past few months.

For bipartite graphs (consider only friendships between men and women), we have had fast matching algorithms since the 1950's via augmenting paths. In the 1965 classic paper, Path, Trees and Flowers, Jack Edmonds gives a polynomial-time algorithm for matching on general graphs. This paper also laid out an argument for polynomial-time as efficient computation that would lead to the complexity class P (of P v NP fame).

After Razborov showed that the clique problem didn't have polynomial-size monotone circuits, his proof techniques also showed that matching didn't have polynomial-size monotone circuits and Raz and Wigderson show that matching requires exponential size and linear depth. Because of Edmond's algorithm matching does have polynomial-size circuits in general. NOTs are very powerful.

Can one solve matching in parallel, say the class NC (Nick's class after Pippenger) of problems computable by a polynomial number of processors in polylogarithmic time? Karp, Upfal and Wigderson give a randomized NC algorithm for matching. Mulmuley, Vazirani and Vazirani prove an isolation lemma that allows a randomized reduction of matching to the determinant. Howard Karloff exhibited a Las Vegas parallel algorithm, i.e., never makes a mistake and runs in expected polylogarithmic time.

Can one remove the randomness? An NC algorithm for matching remains elusive but this year brought two nice results in that direction. Ola Svensson and Jakub Tarnawski give a quasi-NC algorithm for general graph matching. Quasi-NC means a quasipolynomial (2polylog) number of processors. Nima Anari and Vijay Vazirani give an NC algorithm for matching on planar graphs.

Matching is up there with primality, factoring, connectivity, graph isomorphism, satsfiability and the permanent as fixed algorithm problems that have played such a large role in helping us understand complexity. Thanks matching problem and may you find NC nirvana in the near future.

Tuesday, October 31, 2017

The k=1 case is FUN, the k=2 case is fun, the k\ge 3 case is... you decide.

 (All of the math in this post is in here.)


The following problem can be given as a FUN recreational problem to HS students or even younger: (I am sure that many of you already know it but my point is how to present it to HS students and perhaps even younger.)

Alice will say all  but ONE of the elements of {1,...,1010}in some order.

Bob listens with the goal of figuring out the number. Bob cannot possibly store 1010 numbers in his head. Help Bob out by giving him an algorithm which will not make his head explode.

This is an easy and fun puzzle. The answer is in the writeup  I point to above.

The following variant is a bit harder but a bright HS student could get it: Same problem except that Alice leaves out TWO numbers.

The following variant is prob more appropriate for a HS math competition than for a FUN gathering of HS students: Same problem except that Alice leaves out THREE numbers.

The following variant may be easier because its harder: Alice leaves out k numbers, k a constant. Might be easier then the k=3 case since the solver knows to NOT use properties of 3.

I find it interesting that the k=1, k=2, and k≥ 3 cases are on different levels of hardness.  I would like a more HS answer to the k≥ 3 case.

Thursday, October 26, 2017

2017 Fall Jobs Post

You're finishing up grad school or a postdoc and ask yourself what should I do for the rest of my life? We can't answer that for you but we can help you figure out your options in the annual fall jobs post. We focus mostly on the academic jobs. You could work in industry but there's nothing like choosing your own research directions and working directly with students and taking pride in their success.

For computer science faculty positions best to look at the ads from the CRA and the ACM. For theoretical computer science specific postdoc and faculty positions check out TCS Jobs and Theory Announcements. AcademicKeys also lists a number of CS jobs. If you have jobs to announce, please post to the above and/or feel free to leave a comment on this post.

It never hurts to check out the webpages of departments or to contact people to see if positions are available. Even if theory is not listed as a specific hiring priority you may want to apply anyway since some departments may hire theorists when other opportunities to hire dry up. Think global--there are growing theory groups around the world and in particular many have postdoc positions to offer.

The computer science job market remains hot with most CS departments trying to hire multiple faculty. Many realize the importance of having a strong theory group, but it doesn't hurt if you can tie your research to priority areas like big data, machine learning and security.

Remember in your research statement, your talk and your interview you need to sell yourself as a computer scientist, not just a theorist. Show interest in other research areas and, especially in your 1-on-1 meetings, find potential ways to collaborate. Make the faculty in the department want you as a colleagues not just someone hiding out proving theorems.

Good luck to all on the market and can't wait for our Spring 2017 jobs post to see where you all end up.

Monday, October 23, 2017

Open: PROVE the pumping and reductions can't prove every non-reg lang non-reg.

Whenever I post on regular langs, whatever aspect I am looking at, I get a comment telling me that we should stop proving the pumping lemma (and often ask me to stop talking about it) and have our students prove things not regular by either the myhill-nerode theorem or by kolm complexity. I agree with these thoughts pedagogically but I am curious:

Is there a non-reg lang L such that you CANNOT prove L non-reg via pumping and reductions?

There are many pumping theorems (one of which is iff so you could use it on all non-reg but you wouldn't want to-- its in the paper pointed to later). I'll pick the most powerful Pumping Lemma that I can imagine teaching a class of ugrads:

If L is regular then there exists n0  such that for all w∈ L, |w| ≥ n0  and all prefixes x' of w

with |w|-|x'| ≥ n0  there exists x,y,z such that

|x| ≤ n0         

y is nonempty

w=x'xyz

for all i ≥ 0 x'xyiz   ∈ L

If this is all we could use then the question is silly: just take

{ w : number of a's NOT EQUAL number of b's }

which is not regular but satisfies the pumping lemma above. SO I also allow closure properties. I define (and this differs from my last post--- I thank my readers, some of whom emailed me, for help in clarifying the question)

A ≤ B

if there exists a function f such that if f(A) = B then A regular implies B regular

(e.g., f(A) = A ∩ a*b* )

(CORRECTION: Should be B Regular --> A regular. Paul Beame pointed this out in the comments.)

(CORRECTION- My definition does not work. I need something like what one of the commenters suggested and what I had in a prior blog post. Let CL be a closure function if for all A, if A is
regular than CL(A) is regular. Like f(A) = A cap a*b*.  Want a^nb^n \le numb a's = numb b's
via f(A) = A cap a*b*. So want A \le B if there is a closure function f with f(B) = A. )


A set B is Easily proven non-reg if either

a) B does not satisfy the pumping lemma, or

b) there exists a set A that does not satisfy the pumping lemma such that A ≤ B.

OPEN QUESTION (at least open for me, I am hoping someone out there knows the answer)

Is there a language that is not regular but NOT easily proven non-reg?




Ehrenfeucht, Parikh, Rozenberg in a paper Pumping Lemmas for Regular Sets (I could not find the official version but I found the Tech Report on line: here. Ask your grandparents what a Tech report is. Or see this post: here) from Lance about Tech Reports) proved an iff pumping lemma. They gave as their motivating example an uncountable number of languages that could not  be proved non-regular even with a rather fancy pumping lemma. But there lang CAN be easily proven non-reg. I describe that here. (This is the same paper that proves and iff Pumping Lemma. It uses Ramsey Theory so I should like it. Oh well.)

SO, I looked around for candidates for non-reg languages that could not be easily proven non-regular. The following were candidates but I unfortunately(?) found ways to prove them non-regular using PL and Closure (I found the ways by asking some bright undergraduates, to give credit- Aaron George did these.)

{ aibj : i and j are relatively prime }

{xxRw : x,w nonempty }  where R is Reverse.

I leave it to the reader to prove these are easily proven non-regular.

To re-iterate my original question: Find a non-reg lang that is not easily proven non-reg.

Side Question- my definition of reduction seems a bit odd in that I am defining it the way I want it to turn out. Could poly-Turing reduction have been defined as A ≤ B iff if A is in P then B is in P? Is that equivalent to the usual definition? Can I get a more natural definition for my regular reductions?




Thursday, October 19, 2017

The Amazon Gold Rush


Unless you have hidden under a rock, you've heard that Amazon wants to build a second headquarters in or near a large North American city. Amazon put out a nice old fashioned RFP.
Please provide an electronic copy and five (5) hard copies of your responses by October 19, 2017 to [email protected]. Please send hard copies marked “confidential” between the dates of October 16th – 19th to ...
Hard copies? Just like the conference submissions of old. Key considerations for Amazon: A good site, local incentives, highly education labor pool and strong university system, near major highways and airports, cultural community fit and quality of life.

I've seen companies put subsidiaries in other cities, or moved their headquarters away from their manufacturing center, like when Boeing moved to Chicago. But building a second headquarters, "a full equal" to their Seattle campus, seems unprecedented for a company this size. Much like a company has only one CEO or colleges have one President, having two HQs questions where decisions get made. Amazon is not a typical company and maybe location means less these days.

Atlanta makes many short lists. We've got a burgeoning tech community, a growing city, sites with a direct train into the world's busiest airport, good weather, low cost of living and, of course, great universities. Check out the Techlanta and ChooseATL.

So am I using Amazon's announcement as an excuse to show off Atlanta? Maybe. But winning the Amazon HQ2 would be transformative to the city, not only in the jobs it would bring, but in immediately branding Atlanta as a new tech hub. Atlanta will continue to grow whether or not Amazon comes here but high profile wins never hurt.

Many other cities make their own claims on Amazon and I have no good way to judge this horse race (where's the prediction market?). Impossible to tell how Amazon weighs their criteria and it may come to which city offers the best incentives. Reminds me of the Simons Institute Competition announced in 2010 (Berkeley won) though with far larger consequences.

Monday, October 16, 2017

Reductions between formal languages


Let EQ = {w : number of a's = number of b's }

Let EQO = { anbn : n ∈  N} (so its Equal and in Order)

Typically we do the following:

Prove EQO is not regular by the pumping lemma.

Then to show EQ is not regular you say: If EQ was regular than EQ INTERSECT a*b*= EQO is regular, hence EQ is not regular (I know you can also show EQ with the Pumping Lemma but thats not important now.)

One can view this as a reduction:

A  ≤  B

If one can take B, apply a finite sequence of closure operations (e.g., intersect with a regular lang,
complement, replace all a with aba, replace all a with e (empty string), ) and get A.

If A is not regular and A≤ B then B is not regular.

Note that

EQO ≤ EQ ≤ EQ

Since EQO is not regular (by pumping ) we get EQ and \overline{EQ} are not regular.

Hence we could view the theory of showing things not-reg like the theory of NP completeness
with reductions and such. However, I have never seen a chain of more than length 2.

BUT- consider the following! Instead of using Pumping Lemma we use Comm. Comp. I have
been able to show (and this was well known) that

EQ is not regular by using Comm. Comp:

EQH = { (x,y) : |x|=|y| and number of a's in xy = number of b's in xy }

Comm Complexity of EQH is known to be log n  + \Theta(1). Important- NOT O(1).

If EQ is regular then Alice and Bob have an O(1) protocol: Alice runs x through the DFA and
transmits to Bob the state, then Bob runs y from that state to the end and transmits 1 if ended up in an accept state, 0 if not.

But I was not able to show EQO is not regular using Comm Complexity. SO imagine a bizzaro world where I taught my students the Comm Comp approach but not the Pumping Lemma. Could they prove that EQO is not regular. For one thing, could they prove

EQO ≤ EQ  ?

Or show that this CANNOT be done.

Anyone know?

One could also study the structure of the degrees induced by the equiv classes.
If this has already been done, let me know in the comments.






Thursday, October 12, 2017

Lessons from the Nobel Prizes

We've had a big week of awards with the Nobel Prizes and the MacArthur "Genius" Fellows. The MacArthur Fellows include two computer scientists, Regina Barzilay and Stefan Savage, and a statistician Emmanuel Candès but no theoretical computer scientists this year.

No computer scientists among the Nobel Laureates either but technology played a large role in the chemistry and physics prize. The chemistry prize went for a fancy microscope that could determine biomolecular structure. The LIGO project that measures extremely weak gravitational waves received the physics prize.

In a sign of the times, Jeffrey Hall, one of the medical prize recipients, left science due to lack of funding.

The economics prize went to Richard Thaler who described how people act irrationally but often in predictable ways such as the endowment effect that states the people give more value to an object they own versus one they don't currently have. The book Thinking Fast and Slow by 2002 Laureate Daniel Kahneman does a great job describing these behaviors.

While at Northwestern I regularly attended the micro-economics seminars many of which tried to give models that described the seemingly irrational behaviors that researchers like Thaler brought to light. My personal theory: Humans evolved to have these behaviors because while they might not be the best individual choices they make society better overall.

Monday, October 09, 2017

Michael Cohen

When I first saw posts about Michael Cohen (see here, here, here) I wondered

is that the same Michael Cohen who I knew as a HS student?

It is.  I share one memory.

Michael Cohen's father is Tom Cohen, a physics professor at UMCP.  They were going to a Blair High School Science fair and I got a ride to it (I had some students presenting at it.) In the car with Tom and Michael, Michael began telling is dad that his dad's proofs were not rigorous enough. I was touched by the notion that father and son could even have such a conversation.

Were Tom's proofs rigorous? I suspect that for Physics they were. But the fact that Michael could, as a high school student, read his dad's paper and have an opinion on it, very impressive. And very nice.

Michael was brilliant. It's a terrible loss.

Thursday, October 05, 2017

Is the Textbook Market doomed?

STORY ONE:
I always tell my class that its OKAY if they don't have the latest edition of the textbook, and if they can find it a  cheap, an earlier edition (often on Amazon, sometimes on e-bay), that's fine.  A while back at the beginning of a semester I was curious if the book really did have many cheap editions so I typed in the books name.

I found a free pdf copy as the fourth hit.

This was NOT on some corner of the dark web. This was easy to find and free. There were a few things not quite right about it, but it was clearly fine to use for the class. I wanted to post this information on the class website but my co-teacher was worried we might get in trouble for it, and he pointed out that the students almost surely already know, so we didn't. (I am sure thats correct. When I've discussed this issue with people, they are surprised I didn't already know that textbooks are commonly on the web, easy to find.)


STORY TWO:
I know someone who is thinking of writing a cheap text for a CS course. It will only be $40.00. That is much cheaper than the cost of a current edition of whats out there, and competitive with the used editions, but of course much more expensive than free. I think once students start getting used to free textbooks, even $40.00 is a lot.

STORY THREE (What I do): For discrete math we had slides on line, videos of the lectures on line, and some notes on line. For smaller classes I have my own notes on line. The more I teach a course the better then notes get as I correct them, polish them, etc, every time I teach.  Even so, the notes are very good if you've gone to class but not very good if you haven't (that is not intentional- is more a matter of, say, my notes not having actual pictures of DFA's and NFA's).  I have NO desire to polish the notes more and make a book out of them.  Why do some people have that urge? I can think of two reason though I am sure there are more: (1) To make money. If you get a text out early in a field then this could work (I suspect CLR algorithms text made money). I wonder if Calc I books still make money given how many there are. But in any case, this motivation is now gone--- which is one of the points of this post.  (2) You feel that your way to present (say) discrete math is SO good that others should use it also!  But now you can just post a book or notes on the web, do a presentation at SIGCSE or other comp-ed venues. You don't need to write a textbook. (Personally I think this is a bit odd anyway--- people should have their own vision for a course. Borrowing someone else's seems strange to me.)

DEATH SPIRAL: Books cost a lot, so students buy them cheap or get free downloads, so the companies does not make money so they raise the price of the book, so students buy them cheap...(I"m not going to get into whose fault this is or who started it, I'm just saying that this is where we are now.)


With books either cheap-used or free, how will the textbook market survive? Or will it? Asking around I got the following answers

1) There will always be freshman who don't know that books can be cheap or free. This might help with Calc I and other first-year courses, but not beyond that.

2) There will always be teachers who insist the students buy the latest edition so that they can assign problems easier, e.g., `HW is page 103, problems 1,3,8  and page 105 problems 19 and 20. This will help the textbook publishers in that window between the new edition coming out and the book being scanned in. Is that a long window?

3) Some textbooks now come with added gizmos- codes on the web to get some stuff. For the teachers there may be online quizzes. Unfortunately this makes the books cost even more. I personally never found such things useful, but others might.

4) If a student has a scholarship that pays for books, and the students buys the books used on amazon, can the scholarship still pay for them? I ask non-rhetorically. Even if the answer is no, so the student has to buy books at (say) the campus book store (will they still sell books in 10 years?) this is not enough to save the market.

5) Rent-a-books. I've seen these services. But they still cost too much.

6) e-books. If e-books catch on  then that might get rid of the used-book market. And if they are cheap enough that might help. But the flip side- once e-books are out there  it might be even easier to find a free copy online someplace. (Side note- Many people tell me that math books just don't work as e-books.... yet.)

7) The basic problem is cost. Is there a way for publishers to keep costs down? Or is even that too late as students get used to free or free-ish books?

So I ask again, non-rhetorically- is the textbook market doomed?


Sunday, October 01, 2017

Monty Hall (1921-2017) and His Problem

Monty Hall passed away yesterday, best known for co-creating and hosting the game show Let's Make a Deal, a show I occasionally watched as a kid. To the best of my knowledge he's never proven a theorem so why does he deserve mention in this blog?

For that we turn back the clock to 1990 when I was a young assistant professor at Chicago, more than a decade before this blog started, even before the world-wide web. The Chicago Tribune was a pretty good newspaper in those days before Craigslist. Nevertheless, the Sunday Tribune, as well as many other papers across the country, included Parade, a pretty fluffy magazine. Parade had (and still has) a column "Ask Marilyn" written by Marilyn vos Savant, who does not hide the fact that she had the world's highest IQ according the record books in the 1980's.

In 1990, vos Savant answered the following question in her column. Think about the answer if you haven't seen it before.
Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?
This is the kind of deal Monty Hall might have made on his show and so his name got attached to the problem in a 1976 paper in the American Statistician. Marilyn vos Savant claimed it was an advantage to switch. Many mathematicians at the time wrote into Parade arguing this was wrong--either way you have a 50% chance of winning. Even several of my fellow colleagues initially believed it made no difference to switch. Who was this low-brow magazine columnist to say otherwise? In fact, Marilyn was right.

Here is my simple explanation: If you make the commitment to switch, you will win if you pick a goat in the first round, a 2/3 chance of happening. Thinking it makes no difference is a fallacy in conditional probability, not unlike Mossel's Dice Paradox.

Monty Hall himself ran an experiment in his home in 1991 to verify that Marilyn was correct, though modulo the assumption that the host would always offer to make the switch and that everything was chosen uniformly.

Thanks to Bill Gasarch and Evan Golub for some useful details and links. Bill says "history being history, Monty Hall will be remembered as a great mathematician working in Probability." Maybe not, but it does get him remembered in the computational complexity blog.

Thursday, September 28, 2017

Tragic Losses

I'd like to remember two young people who's lives were taken way too early. I didn't know either well but both played large roles in two different communities.

Michael Cohen
Michael Cohen, a young researcher in theoretical computer science, passed away. He's had a number of great algorithmic results most notably his solely authored paper giving a polynomial-time algorithm to construct Ramanujan graphs. Luca Trevisan and MSR give their remembrances. Update (10/5): See also Scott Aaronson, which include comments form Michael's mother and father and a Daily Cal article.

Scout Schultz, in a story that made national news, studied computer engineering at Georgia Tech. On Saturday September 16th Scout was shot by a member of the Georgia Tech campus police. A vigil was held the following Monday, quite peaceful until a splinter group (mostly not Georgia Tech students) broke off, marched to the Georgia Tech police department and set a police car on fire. 

Scout Schultz
The death and its aftermath have shooken us all up at Georgia Tech. What has impressed me during this times is the strength of the Georgia Tech student body. Instead of focusing on blame, they have come together to remember Scout, a leader of the LGBQT community on campus. Being in a liberal city in a conservative state, the politics of the student body is quite mixed, but it doesn't divide the students, rather it brings them together. There's hope yet.

Sunday, September 24, 2017

Science fiction viewers used to embrace diversity (or did they) and now they don't (or do they)

(This post is inspired by the choice of a female to be the next Doctor on the TV show Dr. Who. Note that you can't say `the next Dr. Who will be female' since Dr. Who is not the name of the character. The name has not been revealed. Trivia: The first Dr. Who episode was the same day Kennedy was shot.)


I give a contrast and then say why it might not be valid:

Star Trek- The Original Series. 1966. There is a black female communications officer, a Russian officer and an Asian officer. And Science Fiction Viewers EMBRACED and APPROVED of this (for the time) diversity.

Modern Time: A black Storm Trooper in Star Wars VII (see here), a black Jimmy Olsen  in Supergirl (see here), female Ghostbusters (see here), a female Doctor on Dr. Who (see here and here) , and even the diversity of ST-Discovery (see here) have upset science fiction viewers.

So what happened in 50 year?

Now I say why this contrast might not be valid.  All items here are speculative, I welcome comments that disagree intelligently. Or agree intelligently. Or raise points about the issue.

1) Science Fiction fans aren't racists and anti-women, they just don't like change. Star Trek: The Original Series didn't have an original cannon to violate. Having a black Captain (ST:DSN) or a female captain (ST:VOY) was a matter of NEW characters and I don't recall any objections. (Were there objections?) If in  the ST reboot they made Captain Kirk black, I suspect there would be objections which the objectors would claim are not racist. Would they be?

2) While the fans that are upset get lots of coverage, they might be the minority. I sometimes see more stuff on the web arguing against the racism then the racism itself.  (A friend of mine in South Carolina told me that whenever a Confederate monument is about to be taken down the SAME 12 people show up to protest but get lots of coverage).

3) Science Fiction has gotten much more mainstream, so the notion that `science fiction viewers now do BLAH' is rather odd since its no longer a small community.

4) In 1966 there was no internet (not even in the Star Trek Universe!!) for fans and/or racists to vent their anger.

5) Some of the objections have valid counterparts: "I don't mind Jimmy Olsen being black, I mind him being so handsome, whereas in the Superman Cannon he is not." (Counter: some of the objections are repulsive:; "I don't mind Jimmy Olsen being black, I mind him being a love interest for Supergirl". Gee why is that?)

5a) Another `valid' one `storm troopers were all cloned from ONE white guy so there cannot be a black stormtrooper'.  Racism hiding behind  nitpicking? Actual nitpicking?

6) I give the fans back in 1966 too much credit- it was the showrunners who embraced diversity. The fans-- did they care?

6a) I give the showrunners to much credit. ALL Klingons are war-like, ALL Romulans are arrogant, ALL Vulcans are logical (except during Pon Farr), In the more recent shows like ST-TNG ALL  Ferengi are greedy. So the show accepts that stereotypes can be true.

6b) Women were not portrayed that well in the star trek universe, even in the more recent shows.  See 15 real terrible moments for women on Star Trek

7) Even the 1966 ST  was not as diverse as I make it out to be. I doubt it would pass the Bechdel test


two other points of interest

1) In the 1960's Science Fiction was sometimes  used as a way to talk about current issues since talking about them directly would not have been allowed. We can't really talk about real racism in a TV show so we'll have an alien race where they are all half-black, half-white, but differs on how which side (see here). And now?  Racism, sexism, homophobia can all be talked about freely. Hence other media has moved ahead of Science Fiction for diversity.

2) Also of interest, though not science fiction: The Edward Albee estate blocks a production of Who's afraid of Virginia Woolf that was going to cast a black man as Nick (a supporting character- George is the main male character).  See here.  Why the block? Because that is what Albee (who is now dead) requested. What would he think now? Who knows?

Thursday, September 21, 2017

Acronyms and PHP

Whenever I teach discrete math and use FML to mean Formula the students laugh since its a common acroynm for  Fuck My Life. Now they laugh, and I say I know why you are laughing, I know what it means  and they laugh even harder.

BUT it got me thinking: Pigeonhole Principle! There are more things we want short acroynms for then there are short acroynms. Below are some I thought of. I am sure there are others, in fact I am sure there are websites of such, but I wanted to see which ones I just happen to know.

AMS- American Math Society and much much more:see here

DOA-

Dead on Arrival

Department of Aging. Scary!

ERA-

Earned Run Average in Baseball,

Equal Rights Amendment in politics

PCP-

Phencyclidine, a drug that you should never take.

Prob. Checkable Proofs. Obscure to the public but not to us.

ADDED LATER: A reader noted Post Correspondence Problem, a good example of a natural undecidable problem.

IRA- 

Irish Republic Army

Internal Retirement Account

Several companies have had rumors they fund terrorism because they were giving their employees IRA's. The headline `Company X funds IRA's' could be misunderstood.


SAT-

Standard Aptitute Test

Satisfiability (of Boolean Formulas) Obscure to the public but not to us. Actually it may get less obscure as more ``proofs'' resolving P vs NP come out.

SJW

Single Jewish Female (in classified ads- more on that later). I think SJF is more common.

Social Justice Warrior (sounds like a good thing but might not be)

Classified ads are a source of many acronyms which can be used to teach combinatorics.

{S,M,W,D,G}{B,C,H,J,W}{M,F}


S-single, M-married, W-widowed, D-Divorced, G-Gay (this one I've seen alone making me wonder
about S/M/W/D? I've also seen four-letter acronyms to disambiguate).

B- black, C-Christian, H-Hispanic,  J-Jewish, W-White.

M,F- Male, Female, though I am sure there are ways to say other genders.

Great for combinatorics! especially if you add in other ones (like BD)

WTF-

Wisconsin  Tourism Federation

You know what else it means so I won't say it (this is a G-rated blog). When I first saw it I thought `what the fuck?- how could they have screwed up so badly?'


TEACHING TOOL- when teaching PHP (Pigeon hole Principle, not the language PHP which stands for Hypertex PreProcessing, not quite in order, or Personal Home Page) you can use the the fact that

number of concepts GREATER THAN  number of 3-letter combos

leads to some 3-letter combos will be used more than once.