Sunday, April 24, 2022

The Roeder Problem was Solved Before I Posed it (how we missed it)

(This is a joint post with David and Tomas Harris.)


In my an earlier post (see here) I discussed the MATH behind a problem that I worked on, with David and Tomas Harris, that we later found out had already been solved. In this post we discuss HOW this happened. 

Recall that Bill Gasarch read a column of Oliver Roeder (see here) on Nate Silvers' blog where he challenged his readers to the following:

Find the longest sequence using numbers from {1,...,100} such that every number is either a factor or multiple of the previous number. (A later column (see here ) revealed the answer to be 77 via a computer search, which we note is not a human-readable proof.)

Bill wrote a blog post (see here) and an open problems column (see here ) asking about the general case of {1,...,n}. Before doing this Bill DID try to check the literature to see what was known, but he didn't check very hard since this was not going to be a published paper. Also, he vaguely thought that if it was a known problem then one of his readers would tell him.

QUESTION: Is it appropriate to blog on things that you have not done a search of the literature on?

ANSWER: Yes, but you should SAY SO in the blog post.

As measured by comments, the post did not generate much interest- 10 comments. 2 were me (Gasarch) responding to comments.

David (who has a PhD from UMCP under Aravind Srinivasan) asked Bill to find a HS project for his son Tomas. Bill gave Tomas the sequence problem (as he called it) to look at- perhaps write a program to find what happens for {1,...,n} for small n, perhaps find human-readable proofs of weaker bound, for small n or for n=100.

David got interested in the MATH behind the problem so the project became three projects: Tomas would look at the programing aspects and the human-readable aspects, David would look at the Math, and Bill would...  hmmm, not clear what Bill would do, but he did write up a great deal of it and cleaned up some of the proofs.

David showed

Omega( n/( (log n)^{1.68} )  LE  L(n)  LE  O( n/( (log n)^{0.79} ). 

Tomas and Bill obtained a human-readable proof that L(100) LE 83. (Comments on my blog sketched a proof that L(100) LE 83, and someone else that L(100) LE 80). See my previous post (here) for more on the known numbers for L. 

At that point David did a brief literature search; however, he didn't know what to look for.

BILL still thought of this as a HS project so he didn't think much about a paper coming out of it, or if it was original. So he didn't do the due diligence of seeing what was already known.

David and Tomas were busy working on it, so they only did a few cursory checks of the literature.


With the two results above,  we had a paper! David then looked much more carefully at the literature. He DID find some earlier papers -- he did a Google search for Roeder's puzzle, which mentioned another mathematician, who was quoted in a blog by another mathematician, who eventually mentioned Pomerance's old paper on the topic. Once he found a reference to an actual math paper it was easy to use Google Scholar to find forward/backward citations and find the current state of the art.

His email had subject title

                        SHUT IT ALL DOWN!!!

Which made Bill think it involved a nuclear reactor undergoing The China Syndrome rather than just telling us that other people did had better and earlier results. 

In 1995 Gerald Tenenbaum showed, in a paper written in French,  that there exists a,b such that 

                               n/(log n)^a LE L(n) LE n/(log n)^b (see here). 

More recently, in 2021, Saias showed, in a paper written in French, that 

                                      L(n) GE (0.3 - o(1)) n/log n (see here). 


SO, why didn't Bill, David, Tomas find that it was already known until late in the process:

1) They didn't know the right search term: Divisor Graph

2) The literature was in French so the right search term is graphe divisoriel

3) The transition from FUN HS PROJECT to SERIOUS MATH PAPER was somewhat abrupt and caught Bill by surprise.

Was this a disappointment?

1) We all learned some math from it, so that was nice.

2) We were in a position to read and understand the paper since we knew all of the difficulties --- however, it was in French which I do not read. David reads some, Tomas does not read French.  I prefer to be scooped in English, but even then  I might not be able to read up on the problem since  math is... hard. When did math get so hard? see my blog on that here. When did CS theory get so hard? See my blog on that here.)

Could this happen again?

1) Yes. Language barriers are hard to overcome. Though this is rare nowadays--- not much serious mathematics seems to be done outside English. French mathematicians seem to like to keep their language alive, although they probably know English as well. There may be a few other countries (China, perhaps), where English language skills are not advanced and researchers are cut off from the English literature.

2) Yes. I've heard of cases where many people discovered the same theorem but were unaware of each others results since they were in different fields.

3) Is it easier or harder to reprove a theorem now then it was X years ago?

We have better search tools, but we also have more to search. 

Monday, April 18, 2022

1-week long Summer School for Ugrads Interested in Theory, and my comments on it

Recently a grad student in CS at UMCP emailed me the following email he got,  thinking (correctly) that I should forward it to interested ugrads. 

-------------------------------------------------------

Are you interested in theoretical computer science including topics like algorithms, cryptography, machine learning, and others? If so, please consider applying to the New Horizons in Theoretical Computer Science week-long online summer school! The school will contain several mini-courses from top researchers in the field. The course is free of charge,and we welcome applications from undergraduates majoring in computer science or related fields. We particularly encourage applications from students that are members of groups that are currently under-represented in theoretical computer science.

Students from previous years have shared with us that the mini-lectures, online group activities, and interactions with other students and the friendly TAs were extraordinarily engaging and fun.

For full consideration, please complete the application (it’s short and easy!) by April 25, 2022. The summer school will take place online from June 6 to June 10.

Please see our website for details: see here 

Any questions can be directed to [email protected].

--------------------------------------------------------------------------

A few points about this

1) I emailed them asking `why do people need to apply if its online and free?'

I had one answer in mind, but they gave me another one

Their Answer: They want to have SMALL online activities in groups. If they had X students and want groups of size g then if X is large, X/g may be too large. 

My Answer: If people REGISTER for something they are more likely to actually show up. (I know of a conference that got MORE people going once they had registation, and even MORE when they began charging for it.) 

2) I emailed them asking if the talks will, at some later point, be on line. They will be. I then realized that there are already LOTS of theory talks online that I have not gotten around to watching, and perhaps never will. Even so, the talks on line may well benefit people who goto the summer school if they want to look back and something. 

3) Online conferences PROS and CONS:

PROS: Free (or very low cost), no hassle getting airfare and hotel, and if talks are recorded then you can see them later (that applies to in-person as well). 

CONS: Less committed to going to it. Can go in a half-ass way. For example, you can go and then in the middle of a talk go do your laundry. Being FORCED to be in a ROOM with the SPEAKER may be good. Also, of course, no informal conversations in the hallways.  Also, less serendipity. 

I want to say It would to be good to see talks outside of my area however, this may only be true for easy talks, perhaps talks in a new field, OR talks that are just barely outside my area so I have some context. 

4) I was surprised I didn't get the email directly since I have more contact with ugrads (and I have this blog) then the grad student who alerted me to it. However, I have learned that information gets to people in random ways so perhaps not to surprising. 

Monday, April 11, 2022

The Roeder Seq Problems was Solved Before I Posed it (Math)

  (Joint Post by Bill Gasarch, David Harris, and Tomas Harris) 

 

The divisor graph D(n) is an undirected graph with

vertex set V={1,...,n}$ and

edge set E={(a,b) :  a  divides  b  or  b  divides  a }

We denote the length of the longest simple path in D(n) by L(n).

EXAMPLE: if n=10 then one long-ish sequence is

1,8,4,2,6,3,9

so L(10) GE 7. I leave it to the reader to do better OR to show its optimal. 

 

In 2017 Oliver Roeder asked for L(100) (see here) In a later post Roeder reported that Anders Kaseorg claimed L(100)=77 (see  here). Anders gave a sequence and claimed that, by a computer search, this was optimal. The column also claims that other people also claimed 77 and nobody got a sequence of length 78, so the answer probably is 77 (it is now known that it IS 77).  Roeder also mentions the case of n=1000 for which Kaseorg showed L(1000) GE 418. No nontrivial lower bounds are known. 

In 2019 I (Gasarch) asked about asymptotic results for L(n)  (see my blog post here and my open problems column here.) I began working on it with David and Tomas Harris. David proved that 

Omega( n/( (log n)^{1.68} )  LE  L(n)  LE  O( n/( (log n)^{0.79} ).

We also studied human-readable proofs that L(100) LE X for some reasonable X, though getting a human-readable proof for X=77 seemed impossible. We did get L(100) LE 83, in a human-readable proof. (Some commenters on my post to sketched a proof  that L(100) LE 83 and another that L(100) LE 80 as well.) 

 But it turned out that this problem had already been studied, predating Roeder's column. (This blog post is all about the math, bout the math, no treble.  My next post will be about how we didn't know the literature until our paper was close to being finished.) 

In 1982 Pomerance showed L(n)  LE o(n) (see here). Pollington had earlier shown 

                                          L(n) GE ne^{polylog(n)};

however, the paper is not online and hence is lost to history forever. (If you can find an online copy please email me the pointer and I will edit this post.) 

In 1995 Gerald Tenenbaum showed, in a paper written in French,  that there exists a,b such that 

                               n/(log n)^a LE L(n) LE n/(log n)^b (see here). 

More recently, in 2021, Saias showed, in a paper written in French, that 

                                      L(n) GE (0.3 - o(1)) n/log n (see here). 

(ADDED LATER:  I got a very angry email telling me that the paper was in English and that I am a moron. It turns out that the abstract is in English but the paper is in French, hence the person who send the letter only read the abstract which explains their mistake.) 

He conjectures that L(n)  SIM cn/log n where c is likely in the interval [3,7]. (Apparently, no other information is known about the relevant constant factors in the estimates.)

Interestingly, the work of Tenenbaum and Saias also demonstrates why the study of L(n)  is not an idle problem in recreational mathematics. The upper bounds come from results on certain density conditions for prime factorization of random integers. That is, given an integer x chosen uniformly at random from the range {1,..., n} with prime factorization p1 GE p2 GE ... one wants to show that, with high probability, the primes pi are close to each other in a certain sense. Most recent results on L(n) have been tied closely with improved asymptotic estimates for deep number theory problems.

Determining the value of L(100) (i.e., Roeder's problem) was mentioned in Saias's paper. He claims that L(100) = 77 was discovered by Arnaud Chadozeau, who himself has written a number of papers on other properties of D(n). Since this paper was in 2021 it was after Roeder's column; however, we believe that the different discoveries of L(100) are independent. The recent work around Roeder's column appears to be done independently from the extensive French-language literature on the topic.

The following problems are  likely still open:

 

a) Find L(n) exactly for as many n as you can.  This would clearly need a computer program.

A listing of L(n) for n = 1 ... 200, computed by Rob Pratt and Nathan McNew,

appears as OEIS #A337125. This also includes additional references.

 

b) Find human-readable proofs for upper bounds on L(n) (likely not exact) for as many

n as you can.

  

ADDED LATER: Gaétan Berthe emailed me 

-----------------------------------------------------------------

I'm the author of the last comment on your article about Roeder Sequence , as your curious about the subject I can share what we've done with my friend Paul Revenant those last few years for fun.


It all started with a competition between our classmates (see here though note that its in French) for the 100 and 1000 cases, after a few months Paul using a MIP solver gurobi was able to found a solution of size 666, and last year by studying the structure of the 666 solution we were able, with the help of gurobi again, to prove that there was no 667 solution either.

Paul then achieve to find very probable value of the sequence for 1 to 1000 (we didn't automatize the proof of 666 but it should be doable). On my side I tried to look for good solutions for the 10000 case, again using gurobi and the structure that appeared in the solution of size 666. The structure enable to cut the problem in two subpart, so the search goes faster I was able to find a solution of size 5505.

So I would say that the two mains reasons we're able to prove optimality for high numbers as 1000 are:

- MIP solver such as gurobi are very powerful tools.

- The longest path in the divisor graph are highly structured.

I joined our informal proof of the 666 case (the solution at the end), what is interesting is to understand how the solution is composed of different blocks depending of the prime decomposition of the elements. I joined lower bound from 1 to 1000 computed by Paul, that are very likely to be optimal.

---------------------------------------------------------------------------------------------------------

He also emailed me

1)  a list of the numbers I call L(n) for n=1 to 1000. These have not been refereed though I think they are correct. The list is here

AND

2)  a PROOF that L(1000)\le 666 (and they HAVE a sequence of length 666, so L(1000)=666).

Again, not refereed, but you can read the proof yourself here WARNING- the proof is in ENGLISH, so you cannot use it to improve your mathematical French. 

Tuesday, April 05, 2022

Masks

Illinois Tech removed the last of their mandatory masking restrictions yesterday. Chicago had zero Covid deaths. Yet I still get messages like this in my twitter feed.

The science is unequivocal for vaccines, which do a good job preventing infection and a strong job saving lives. I just got my second booster on Sunday.

Masks give you some protection but nothing like the vaccines. It's impossible to completely remove the risk of Covid so people need to make their own choices and tradeoffs. If you are vaccinated your chance of serious illness is tiny, whether or not your wear a mask. And mask wearing is not cost-free.

I just don't like wearing masks. Wearing a mask bends my ears and is mildly painful. People can't always understand me when I talk through a mask, and they can't read my facial expressions. People and computers don't recognize me in a mask. Masks fog up my glasses. I can't exercise with a mask, it gets wet with sweat and hard to breath. You can't eat or drink wearing a mask.

Now everyone has their own tolerance and I respect that. I'll wear a mask if someone asks nicely or if it is required, like on public transit and many theaters. If I have a meeting with someone wearing a mask, I'll ask if they would like me to put mine on. In most cases they remove theirs.

On the other hand, the Chicago Symphony concert I planned to attend tonight was cancelled because the conductor, Riccardo Muti, tested positive for Covid (with minor symptoms). For my own selfish reasons, I wish he had worn a mask.



Friday, April 01, 2022

A Ramsey Theory Podcast: No Strangers at this Party

 BILL: Lance, I am going to blog about the Ramsey Theory Podcast called 

                            No strangers at this party

LANCE: Oh, so that will be your April Fools Day post? That is too unbelievable so it won't work as a joke.

BILL: Okay, you got me. But it will work if I get 14 Ramsey Theorists to do Podcasts on Ramsey Theory and pretend its coming from... where should it come from. 

LANCE: A Hungarian Middle School. 

BILL: That's  too realistic. How about Simon Fraser University in Canada?

LANCE: Why there?

BILL: Why not there?

LANCE: Knock yourself out.

---------------------------------------------------------------------------

At Simon Fraser University they have a podcast on Ramsey Theory. They had 14 episodes, each one was an interview with someone who is interested in Ramsey Theory. I don't like the term `Ramsey Theorist' since I doubt anyone does JUST Ramsey Theory (e.g., I do Muffins to!).

Here is the list of people they interviewed. You can find the podcasts at SpotifyAnchorApple Podcasts, and Google Podcasts.

Julian Sahasarabudhe, 

Jaroslav Nesetril

Joel Spencer 

Donald Robertson

Fan Chung

Steve Butler

Tomas Kaiser

David Conlon

Bruce Landman 

William Gasarch

Bryna Kra

Neil Hindman

Adriana Hansberg

Amanda Montejano





Saturday, March 26, 2022

I don't care about Ketanji Brown Jackson's LSAT scores and she does not care about my GRE scores

Tucker Carlson has asked to see Ketanji Brown Jacksons's LSATs. 

When I applied to College they (not sure who they are) wanted to see my SAT scores. Putting aside the issue of whether the test means anything, they viewed the SATs (and my HS grades and letters from teachers) as a sign of my 

                                                       potential. 

When I applied to Grad school they (a different they) wanted to see my GRE scores. Putting aside the issue of whether the test means anything, they viewed the GREs (and my college grades and letters from professors) as a sign of my

                                                       potential. 

When I applied for jobs as a professor they (another they) wanted to see my resume (papers I wrote) and letters from my advisor and others (I think). They did not look at my grades (just as well- I got a B in both compiler design and operating systems. Darling is amazed I even took operating systems). This was probably the oddest of the application processes since they were looking for both

                                                    potential and achievement.

That is, the evidence that I could do research was that I had done some research. This was before the current  era where grad students had to have x papers in prestige conferences to get a job at a top y school. The letter from my advisor may well have spoken of my potential. 

When I went up for tenure ALL they cared about was PAPERS (and letters saying they were good papers), and some teaching and service. It was based just  on 

                                                          achievement.

A wise man named Lance Fortnow once told me:

The worst thing a letter of recommendation for a tenure case can say is `this person has great potential'


It would have been rather odd for Tucker Carlson to ask to see my SAT scores or GRE scores or by HS, College, or Grad School grades as a criteria for Tenure. Those tests and those grades are there to measure potential to DO something, whereas if you are going up for tenure or a Supreme Court seat, you've already DONE stuff. 

After I got into grad school one of my first thoughts was

Nobody will ever want to see my GRE's again. ( I was right.) 

After KBJ got into Law School she might have thought

Nobody will ever want to see my LSAT scores again. (She was wrong.)




Sunday, March 20, 2022

Do you want to be the SIGACT NEWS book review editor?

I ran the SIGACT Book Review Column from 1997-2015 (18 years). You can find all of my columns, plus reviews I did for Fred, here.

When I handed it off to Fred Green I gave him this sage advice:

                   Nobody should do this kind of job for more than about 5 years.

He ran the SIGACT Book Review Column since the end of 2015. You can find some of his columns here.

Fred is taking my advice and looking for a successor.

SO, this blog is a call to ask

                 DO YOU WANT TO BE THE SIGACT NEWS BOOK REVIEW EDITOR?

If so then email

Fred: [email protected]


DO NOT BE SHY! I suspect he won't get many applicants, so if you want the job its probably yours.


PROS

1) You get to skim lots of books and read some of  them.

2) You get some free books.

3) You get plugged into the book community (this helped me when I wrote my two books).

4) You'll have two Veteran Book Review Editors happy to review for you.

5) You get to decide the direction the column goes in.

Both Fred and I did mostly CS theory books. However:

a) I did more combinatorics, educational, history, and Computers & Society books than usual.

b) Fred did more Number Theory and Physics than usual.

(Since I did the job 18 years and Fred for 6, its not clear what usual means.) 


CONS

1) You have to get out a book review column 4 times a year.

2) You have to find reviewers for books and then email them when the reviews are due.

(I think Fred is still waiting for me to review a Biography of Napier. Oh well. On the other hand, I was the one who liked having history books, which may explain why Fred never hassled me about it.) 


ADVICE

Prob should be done by someone who already has Tenure. While seeing and skimming thosebooks is GOOD for your research career, and good in the long-termsomeone pre-tenure really needs to get papers out in the short term. Also, when you get a book think about who might be good to review it--- don't take on to many yourself. 


PARTING GIFT OR WELCOME GIFT

In a recent column I had a review of a 5-book set from the LESS WRONG blog. I amcurrently working on a review of a 4-book set set from the LESS WRONG blog. This willeither be a parting gift for Fred or a Welcome gift to his successor.


Thursday, March 17, 2022

The War and Math

During the early parts of the cold war of the 20th century, we saw two almost independent developments of computational complexity, in the west and in the then USSR. There was little communication between the two groups, and countless theorems proven twice, most notably the seminal NP-complete papers of Cook and Levin. To understand more, I recommend the two articles about the early days of complexity by Juris Hartmanis and by Boris Trakhtenbrot.

Russia's invasion and relentless bombing in Ukraine have quickly separated the east and the west again. 

Our first concern needs to be with Ukraine and its citizens. We hope for a quick end to this aggression and Ukraine remaining a free and democratic country. Ukrainian cities have undergone massive damage, and even in the best possible outcome it will take years if not decades to fully rebuild the country. 

Terry Tao has been collecting resources for displaced mathematicians due to the crisis.

We've cut off ties with Russia institutions. In our world, major events to be held in Russia, including the International Congress of Mathematics and the Computer Science in Russia conference are being moved online. I was invited to workshops in St Petersburg in 2020 and 2021, both cancelled due to Covid, and was looking forward to one in 2022, which if it happens, will now happen without me. 

The music world has has cancelled some stars, most notably Valery Gergiev and Anna Netrebko, due to their close ties to Putin. It's rare that we do the same to mathematicians for political reasons though not unheard of. I suspect most of our colleagues in Russia oppose the war in Ukraine, or would if they had accurate information of what was going on. I have several Russian friends and colleagues including two I travelled to Moscow in 2019 to honor and would hate to be disconnected from them.

It's way too early to know how this will all play out. Will we see a quick Russian retreat? Not likely. Will we see a situation that sees a mass migration of Ukranian and Russian mathematicians and computer scientists to Europe and North America, like in the 1990's? Possibly. We will see a repeat of the cold war, disconnected internets and science on both sides happening in isolation? I hope not but we can't rule it out.

Tuesday, March 15, 2022

Problem X won't be solved in MY lifetime- but what about...

1) In 1989 on the episde The Royale of Star Trek: The Next Generation (which takes place in the far future)  Captain Picard is working on Fermat's last theorem which he says quite explicitly is still open.

When I saw the episode I asked Larry Washington, a Number Theorist at Univ of MD, when he thought FLT would be solved. He said

                                      It will be solved within the next 10 years.

And indeed- Wiles solved it in 1993-sort of. There was a flaw in the proof which he fixed in 1994 with the help of his former student Richard Taylor. Wiles published the correction to the flaw in 1995, so we will date it as having been solved in 1995. Larry Washington was correct.  And in an episode of Star Trek: Deep Space Nine in 1995 (episode name:Facets) Dax says that a previous host, Tobin Dax, had done the most creative work on FLT since Wiles. Maybe Tobin wrote this limerick:

A challenge for many long ages

Had baffled the savants and sages

Yet at last came the light

Seems that Fermat was right

To the margin add 200 pages.


I asked Larry W when he thought Riemann would be solved. He said  

                    In your lifetime but not in mine.

He is about 10 years older than I am and I think we are both in good health. This seems like a rather precise prediction so I am skeptical. But he did get FLT right...

2) In class I sometimes say things like 

I do not think Quantum Computers will factor faster than classical in my lifetime. 

I do not think P vs NP will be solved in my lifetime.

I can imagine P=BPP will be proven in my lifetime. (I said that 10 years ago. I am less imaginative now.) 

I hope the muffin problem is solved in my lifetime (it was, see here).

I didn't quite think about the difference in my age and the students until recently when I was working with Ilya Hajiaghayi (Mohammd H's 9 year old son) on cryptography and he said 

In your recorded lecture you said you don't think quantum computers will be a threat to cryptography  in your lifetime. What about in my lifetime?

Indeed- his lifetime and mine are rather far apart. 

I am reminded that one of the answers to my P vs NP poll made the point that while we have some sense of what will happen in the next 10 years, maybe even 20, math and life can change so much that conjectures beyond that are guesswork. Any  prediction for x years from now you should have confidence < 1/ln(x) of it being true.





Sunday, March 06, 2022

Random thoughts on the Russian Invasion of Ukraine

 1) My first thought was: Doesn't Putin know that his army (and his society) is corrupt and people are promoted on loyalty rather than talent, hence the invasion is not going to work? But then note

a) He invaded Georgia (the country not the state)

b) He annexed Crimea

c) NATO agreeing on sanctions? They can't even agree on what to have for lunch.  

d) The above question ASSUMES that he will lose. This is not clear yet.

2) The US and other countries are imposing sanctions. Visa, MC, and Netflix have withdrawn from Russia. Will these cause Putin to stop, or will they just impose hardships on the citizens without having an affect? I ask non-rhetorically. Foreign Policy is hard, though I suspect Biden has hired experts and is listening to them. Doesn't mean they are right. 

3) This seems like a case where its obvious that Putin is in the wrong so I was surprised to see some Pro-Putin arguments. To be fair, some were more that we should not get involved, which is not quite Pro Putin. Here are some and my thoughts on them.

a) Putin never called me a racist and never made my kids learn Critical Race Theory. This is meant as a GOTCHA comment. To take it seriously one would have to (1) examine what American's are learning in grade school, (2) examine what Russians are learning in grade school, (3) see which country is giving their students a more honest view of things (particularly history), and (4) decide that whichever school is teaching more honest material deserves are support. 

b) Putin is a strong leader and I admire strong leaders. Really? If  Biden was a strong leader who could push through the Build-Back-Better plan, would you admire that? You can't just admire strong leaders in the abstract, you have to see where they lead. (Same with admiring people who have principles.)

c) Putin stands for good Christian values. OH- so Putin likes to help the poor and does not approve of divorce or pre-marital sex. Oh, that NOT what you mean? Oh, you just mean that he does not like gay people or abortion. OH, thats not correct- Russia has the second most number of abortions of any country (see here) So the only issue where Russia shares your values is in not liking gay people. Is that enough  commonality is enough to justify invading a country? This does raise the serious question: who do you support in a war? The country that shrares your values? The country that didn't start it (sometimes hard to tell, though not in this case)? The country you have a treaty with? These are good and serious questions. 

d) How come the world does not like Putin's war based on lies and had no problem with W's war on Iraq that was based on lies? This is actually a good question. Being an academic by first impulse is to write a paper on it. There are differences between the invasion of Ukraine and Gulf War II, but still, lets assume that they really are somewhat equivalent. The person asking the question was probably AGAINST Gulf War II. Hence they should be against the invasion of Ukraine as well. So this is a good question about the America and NATO's Double standard and hypocrisy but is not a reason to be pro-Putin. (I was emailed that there are many conflicts that American and NATO do not care about that are as bad as Putin's invasion.) 

e) Russia had real concerns about security. The last time Russia was invaded was WW II (if I am wrong then please correct me in the comments). Even so, I've heard analogies made to America freaking out when Cuba had Nuclear missiles. There were no nukes in Ukraine. Ukraine was not going to join NATO anytime soon. I wonder if this was a pretense on Putin's part and not a real reason. 

f) See here. I give an excerpt (I am not making this up). 

But as its Covid mission has become less clear, the group’s channels have turned to Russia’s invasion of Ukraine, where conspiracy-minded thinking has flourished. While some group members have admonished Russian President Vladimir Putin for the invasion, QAnon and anti-vaccine contingents within the groups have seized on a false conspiracy theory that the war is a cover for a military operation backed by former President Donald Trump in Ukraine.

The conspiracy theory, which is baseless and has roots in QAnon mythology, alleges that Trump and Putin are secretly working together to stop bioweapons from being made by Dr. Anthony Fauci in Ukraine and that shelling in Ukraine has targeted the secret laboratories. Fauci, director of the National Institute of Allergy and Infectious Diseases, has emerged in the past year as a main target for far-right conspiracy theories.

3) I was somewhat surprised when Hungary came out against Putin. But Putin's arrangments with his allies are transactional- there is no real love there. I was much more surprised when Switzerland came out against Putin. Switzerland has been neutral since 1515 (I think I read that some place). 



Wednesday, March 02, 2022

REU programs in general, and two at Univ of MD this summer.

REU stands for Research Experience for Undergraduates. 

REU programs are funded by the NSF. The NSF website of REU programs is here

Univ if MD at College Park dept of Comp Sci is running two REU programs this summer:

I (William Gasarch) am running  REU-CAAR (Combinatorics and AI Applied to Real problems) whose theme is applying theory to practice. The website for it is here.

 Jacquelyn Michaelis and Mihai Pop are running REU-BRIDGe (Bioinformatics Research In Data science for Genomics) which, as you can probably tell from the name, is in bio-comp. The website for it is here.

Most REU programs have the following: 

1) There is an admissions period where many people apply (I had around 200 applicants last year) of which only about 10 get in. Some have money for a few extra students. This year both REU-CAAR and REU-BRIDGe have applications due March 22; however, in the past I have admitted students before then, so students who apply March 21 may be at a severe disadvantage. 

2) Students apply from across the United states and these programs are competitive, so good to apply to several that you would definitely goto. Students ask me how many- I'll say 10 though temper that with only applying to those you REALLY would goto, and if there are MORE THAN 10 that look awesome, you could apply to more. 

3) Students stay in the dorms (the last two years some programs cancelled, and some were virtual- mine was virtual) and get stipend of $6000, and a meal card. The program is 10 weeks.

4) Students work on projects in teams of 2-5. Some programs have the students pick what projects they would be happy to work on when they apply (mine does that) while others assign projects once students arrive (REU-BRIDGe will do that). The later makes sense if the program is very focused so the projects do not differ that much. 

5) These programs are excellent for giving ugrads a chance to do research (NSF wants at least half of the students to come from non-research schools) and a sense of what grad school is like. So I recommend students thinking of grad school, or just want to do research, to apply to these programs. 

6) Some students get papers out of the research. In these cases the research usually continues after the program is over. 

7) It is healthy for a student to go to an REU program that is at a DIFFERENT school then where they are an ugrad for broadening. There may be mitigating circumstances where this is not possible. 


Saturday, February 26, 2022

I did an Instagram Live with Mohammad Hajiaghayi

 Today I did an Instagram Live with Mohammad H. He was the host, asking me questions. We discussed 

Our lives

Blogging (which I do but he does not)

Parenting (which he does but I do not)

P vs NP (which we both care about) 

Zero Knowledge and Zcash

and

How to inspire young minds (since I mentor many students, including Mohammad's 9 year old son)

The conversation is on you-tube here

Enjoy!


Thursday, February 24, 2022

I will be on instagram/If you have two reals in a box- Answer (Guest Post by David Marcus)

I will be on instragram:

We,  Prof. Mohammad Hajiaghayi and Prof. William Gasarch plan to have an Instagram Live at @mhajiaghayi this SAT FEB 26, 1:30PM EDT (in English).

 We talk about our lives as well as blogging, research, and how to inspire young minds. Please join if you can.

#PvsNP #blogging #youngminds #instagram


-------------------------------------

This is the answer to the problem posted in the last post which was a guest post by David Marcus. This post is also a guest post by him. 

We restate the problem:


-------------------------------------------------

PICK THE LARGEST NUMBER:

There are two distinct reals in a box (how do they fit! aren't reals infinite!). They are called the first and second number. 

You want to pick the larger one. You can pick one of the numbers at random and look at it

before deciding which one you want. 

Is there a strategy that will win with probability > 1/2.

CLARIFICATIONS:

1) We do not want a strategy that does well on average or in the long run. Even if the games is played just once, we want the probability of winning to be > 1/2.

2) It must have prob of winning > 1/2 for EVERY pair of reals.

3) Here is an example of a strategy that does NOT work: Pick the first number with prob 1/2. If its positive then keep it, else dump it. If the numbers are{1,2} this only works half the time.

-------------------------------------------------

There is a strategy. In fact, we give two.


STRATEGY ONE

Before looking at any number, pick a number x on your own from the reals according to a distribution with full support (every open interval has prob greater than 0). Then pick a number from the box (prob 1/2-1/2), which we call y. If x<y then keep y. If y\le x then take the other number.

If x is between the two numbers, then the strategy works. If not then the strategy does not hurt, so the prob in that case is 1/2. Hence you do better than 1/2. 

STRATEGY TWO

Let f: R--> (0,1) be strictly increasing. Pick a number from the box, call it y. Keep it with prob f(y).




Monday, February 21, 2022

I will be on Instagram/If you have two reals in a box.... (Guest Post by David Marcus)

I will be on instragram:

We,  Prof. Mohammad Hajiaghayi and Prof. William Gasarch plan to have an Instagram Live at @mhajiaghayi this SAT FEB 26, 1:30PM EDT (in English).

 We talk about our lives as well as blogging, research, and how to inspire young minds. Please join if you can.

#PvsNP #blogging #youngminds #instagram

-------------------------------------

 (David Marcus emailed me this for a guest post, inspired by my posts on a similar problem where I gave the question here and the answer here.)

This is a well known problem, but I have learned over time that not everyone knows things that are well known.

PICK THE LARGEST NUMBER:

There are two distinct reals in a box (how do they fit! aren't reals infinite!). They are called the first and second number. 

You want to pick the larger one. You can pick one of the numbers at random and look at it

before deciding which one you want. 

Is there a strategy that will win with probability > 1/2.

CLARIFICATIONS:

1) We do not want a strategy that does well on average or in the long run. Even if the games is played just once, we want the probability of winning to be > 1/2.

2) It must have prob of winning > 1/2 for EVERY pair of reals.

3) Here is an example of a strategy that does NOT work: Pick the first number with prob 1/2. If its positive then keep it, else dump it. If the numbers are{1,2} this only works half the time.

(Warning: I will NOT block comments that give away the answer, so if you want to work on it without knowing the answer, do not look at comments.) 



Monday, February 14, 2022

Belated happy 80th, Allan Borodin!

Guest Post by Aravind Srinivasan 

Allan Borodin turned 80 in 2021. This post is to belatedly wish him a very happy 80th, and to give a short personal perspective. 

Three things come to mind when I think of Allan:

  1. His range of research topics: I was first exposed to his work (Borodin's Gap Theorem) in a complexity-theory class by Hartmanis in Spring 1990, and have since enjoyed reading---at varying levels of depth---his works on algebraic complexity, space complexity and tradeoffs, circuit complexity, lower bounds in general, routing, adversarial queuing, online algorithms, priority algorithms, and E-commerce (I am surely leaving out some areas). This is an amazingly broad sweep!
  2. His enthusiasm in learning about and developing new models, as our field has evolved greatly over time.
  3. The enthusiastic embrace he has given to researchers spanning generations. Indeed, I am one of many who have been inspired by various facets of his research and personality.

Photos from Allan’s 60th can be seen at Amos Fiat’s page.

Thank you for everything Allan, and wishing you continued robust health and enjoyment of your academic work! 

Tuesday, February 08, 2022

A Book Break

I got the writing bug back while working on my recent CACM article and I'd like to try my hand at another book. Not sure the exact topic but something related to the changing nature of computing and its implications. 

I'll cut down my blogging for a while. I'll still post or tweet when I have something I want to say. Bill will continue to post regularly and keep this blog active.

Bill asked me if I have time to write this book as dean but he already knew the answer. Writing keeps me sane in a world that seems less and less so.

Sunday, February 06, 2022

PSPACE is contained in Zero Knowledge!! How come nobody seems to care?

(This post was inspired by Lance's post on Zero Knowledge, here, which was inspired by a video he has in the post which was inspired by... (I think this ordering is well founded.))

 ZK= Zero Knowledge.

When it was shown that NP \subseteq ZK this was a big deal. This was by Goldreich-Micali-Wigderson  (see here (FOCS-1986, JACM-1991). In the JACM paper they have the following passage:

Our result that all languages in NP have zero-knowledge proof systems, has been extended to IP, assuming the same assumptions. (The result was first proved by Impagliazzo and Yung, but since their paper [53] contains only a claim of the result, the interested reader is directed to [11] where a (different proof) appears.) In other words, whatever can be efficiently proven can be efficiently proven in a zero-knowledge manner. This may be viewed as the best result possible, since only languages having interactive proof systems can have zero-knowledge interactive proof systems.

11. BEN-OR, M., GOLDREICH, O., GOLDWASSER, S., HASTAD, J., KILLIAN, J., MICALI, S,,  AND ROGAWAY, P. Everything provable is provable in zero-knowledge. In Proceedings of Advances in Cryptology— Crypto88. Lecture Notes in Computer Science, vol. 403. Springer-Verlag, New York, 1990, pp. 37-56.

53.IMPAGLIAZZO. R., AND YUNG, M. Direct minimum-knowledge computations. In C. Pomerance, ed., Proceedings of Advances in Cryptology— Crypto87. Lecture Notes in Computer Science, vol. 293. Springer-Verlag, New York, 1987, pp. 40-51.
Later the papers of Lund-Fortnow-Karloff-Nisan and Shamir showed IP=PSPACE. Hence

PSPACE \subseteq ZK

When I realized this I thought OH, that's interesting! I then looked around the web and could not find any mention of it. I asked Lance and some people in crypto and yeah, they all knew it was true, but nobody seemed to care.

Why the apathy? Speculation:

1) ZK is a notion people actually want to use in real crypto (and there has been some progress on that lately). The prover for ZK in PSPACE has to be way to powerful to be practical. I don't really like this explanation since we are talking about theorists. Even in crypto, which has more of a connection to the real works then, say, Ramsey Theory, there are still plenty of non-useful results. 

2) IP=PSPACE was the big news and  had interesting proof with nice ideas. Nothing crypto-ish about it. So the corollary that PSPACE \subseteq ZK is an afterthought. 

3) SAT in ZK was big news. IP in ZK is nice, but uses mostly the same ideas.

4) I am WRONG- it is a celebrated result and I somehow missed the celebration.

5) The proof that ZK is in PSPACE USES two interesting results, but adds NOTHING to the mix. In short, the proof is to easy.

Any other ideas?

Wednesday, February 02, 2022

The Beginnings of Zero-Knowledge

Wired runs this video series where topic expert explain concepts to five levels of difficulty, typically a child, teen, undergrad, grad student and expert. UCLA professor Amit Sahai took this on for zero-knowledge. 

I'd recommend the whole thing but I'd like to focus on the last segment with USC Professor Shanghua Teng (starts at 17:05). Amit nicely summed up the importance of the paper.

What was such a beautiful insight is that the idea of zero-knowledge being something that you can already predict. If you can already predict the answer, then you must not be gaining any knowledge by that interaction. This insight of being able to predict the future accurately, and that being an evidence of a lack of new knowledge.

Like Shanghua I was also assigned the seminal zero-knowledge paper by Goldwasser-Micali-Rackoff from my advisor. In many ways the original STOC paper was rough. The definitions were buggy, the examples uninspiring. Supposedly the paper didn't even get accepted into a conference in its first try. And yet as you read the paper you realize the potential, the beauty of not one but two new models that would go on to change both cryptography and complexity forever.

In the fall of 1985 when I started graduate school I took a cryptography class from Manuel Blum. Much of that class was spent on protocols that would convince you that, for example, a number was the product of three primes. By the spring of 1986, Goldreich, Micali and Wigderson distributed their paper showing, among other things, all NP problems has zero-knowledge proofs, making many of the protocols discussed in Blum's course a few months earlier trivial corollaries.

But it wasn't just zero-knowledge. Goldwasser, Micali and Rackoff (and independently Babai and Moran) developed the notion of interactive proof, a proof system with statistical confidence, a model that would lead to probabilistically checkable proofs and helping us understand the limits of approximation.

I owe most of my early research to the models developed in the GMR paper and glad that Amit has found a way to share these ideas so well.

Sunday, January 30, 2022

Regan Lipton celebrates my 1000th blog post and random thoughts this inspires

Ken Regan emailed me recently asking if our software could tell how many blogs I had done (not how many Lance+Bill had done). We didn't know how to do that but he managed it anyway. Apparently he was more interested in this question than either Lance or I was. 

But the answer was interesting: My1000th post of Complexityblog was about Betty White dying at just the wrong time to be in those those we say goodbye to articles that appear CLOSE to the end of the year. (I don't know why, but I think the fact that my 1000th post was on Betty White is just awesome!) The post is here. He was asking this because he thought (correctly) that I was around 1000 and wanted to do a tribute blog to me (actually it was done by Lipton and Regan- more on that later). And indeed they did do the post, its here.

RANDOM THOUGHT ONE

While preparing it Ken asked me about my papers.  This brings up the more general question: When looking at your old work what do you think? Common reactions are

1) Gee, I was smarter then. That was very clever. OH, now I remember, my co-author did it. 

2) Gee, I was dumber then. I could do that argument so much better now. 

3) Why did I care about Muffins so much to write a book about it? (Replace Muffins with whatever you worked on and book with the venue it appeared in.) 

Item 3 is probably the most common: As a graduate student one works on things without really have a vision of the field (though the advisor can mitigate this) so what you work on may seem odd later on. And ones tastes can change as well. 

RANDOM THOUGHT TWO

Ken and Dick write actual posts together. I find that amazing! By contrast, the extent of Lance and my interactions about the blog are: 

a) Someone died. Which of us should do the blog obit? or get a guest blogger.?(Whenever Lance phones me on the telephone I answer who died and usually someone did.) 

b) Which of us does the April Fools Day post this year (we usually alternate, or do we)?

c) I plan on doing 2 posts close together- a question and an answer, so when do you NOT plan on blogging so I can do that.

d) Someone proved X. Which of us should blog? Or should we get a guest blogger?

e) Establish a general rule for the year like Bill will post Sunday's, Lance Thursdays.

f) I ask Lance for technical help on the blog. How do you get rid of the white background when I cut and paste?

g) Sometimes one of us wants commentary on a blog we are working no- but that is rare. Though I asked Lance for this post and he added a few things to this list.

h) Sometimes I look at one of his posts before it goes out and offer commentary, or vice versa. Also rare.

i) Lance writes the end of year posts, but always with my input. We jointly choose the theorem of the year.

j) The very rare joint posts.

k) If we happen to be in the same place at the same time, like Dagsthul, we'll do a typecast capturing our conversations. In the past we've also had podcasts and vidcasts together.



Wednesday, January 26, 2022

A Failure to Communicate

The screenwriter Aaron Sorkin wrote an article on prioritizing "Truth over Accuracy". He tells stories from his movies The Social Network and Being the Ricardos, of where he moves away from accuracy to get to the truth of a situation.

My friend and teacher, the late William Goldman, said of his Academy Award-winning screenplay for All the President's Men, "If I'm telling the true story of the fall of the President of the United States, the last thing I'm going to do is make anything up." I understand what he meant in context, but the fact is, as soon as he wrote "FADE IN," he'd committed to making things up. People don't speak in dialogue, and their lives don't play out in a series of scenes that form a narrative. Dramatists do that. They prioritize truth over accuracy. Paintings over photographs.

As scientists we focus on accuracy, as we should in our scientific publications. However being fully accurate can distract from the "truth", the underlying message you want to say, particularly in the title, abstract and introduction of our papers 

Even more so when we promote our research to the public. A science writer once lamented to me that scientists would focus too much on the full accuracy of the science and the names behind it, even though neither serves the reader well.

Reminds me of the recent Netflix movie Don't Look Up satirizes scientists trying to communicate an end-of-the-world event to an untrusting society. I wish it was a better movie but still worth watching just to see Leo DiCaprio and Jennifer Lawrence play scientists frustrated with their ability to communicate a true existential crisis to the government and the general public. 

So how should we as scientists try to frame our messaging to get people onboard, particularly when we say things they don't want to hear? Most importantly, how do scientists regain trust in a world where trust is in short supply. Perhaps we should paint more and photograph less.