基于鸢尾花数据集的逻辑回归分类实践
重要知识点
逻辑回归 原理简介:
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:
logi(z)=11+e−z logi(z)=\frac{1}{1+e^{-z}} logi(z)=1+e−z1
其对应的函数图像可以表示如下:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))
plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()
通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且logi(⋅)logi(\cdot)logi(⋅)函数的取值范围为(0,1)(0,1)(0,1)。
而回归的基本方程为z=w0+∑iNwixiz=w_0+\sum_i^N w_ix_iz=w0+∑