👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于小生境粒子群优化算法的考虑光伏波动性的主动配电网有功无功协调优化研究
💥1 概述
1.1 基本粒子群算法(PSO)
粒子群算法是在对鸟群和鱼群的群体动力学行为研究的基础上而演化而来,是对其行为的一种模拟.
在群体中,任何一个个体在觅食过程中不仅与过去积累的经验和认知有关,同时还和群体中其他的个体之间存在着影响.在PSO优化算法中,每个个体在向最优解过程移动中,都有自己的速度和位置信息,并且这些信息是不断变化调整的(变化的主要依据是粒子过去积累的经验和群体中其他个体的
信息).在PSO算法初始化过程中,随机产生粒子群的种群,其中每个粒子都是目标函数的解,为了找寻函数的最优解,每个粒子会根据个体历史最优位置和种群的最优位置来多次调整自己的速度更新策略,然后调整位置更新策略,并经多次迭代寻优最终找到最优解.
1.2 小生境技术
根据自然界中的进化理论,生活习性相似的物种总是生活在同一个环境中.因此,每个物种都有着自己特定的生存环境,这个特定的环境就是小生境,每个物种在自己的小生境中具有相同的特性和习性等,并且在一起相互交流,生殖后代].对于这个特定环境下的生物存在优劣之分,它们在有限的资源下,相互交流,相互竞争,经过相互协调达到共同进化,依据“优胜劣汰”的思想,适应环境能力强的留下来,弱的将淘汰.所以,这种小生境的存在对新的物种形成,保持物种的多样性方面具有重要的意义[将小生境技术引入到粒子群算法中,提出了小生境粒子群算法.该算法首先要参考种群每个个体之间
的相似程度﹐确定每个粒子存在的小生境群体,与之前相比,粒子不是聚集在一个环境中,而是划分成几个群体便于粒子群算法找到更多的最优个体,确定依据是每个粒子之间的距离.在确定好小生境群体后,然后在每个小生境中利用标准粒子群算法按照速度更新策略和位置更新策略进行更新,并利用共享机制来改变每个粒子的适应度值",维持种群的多样性.
1.3 数学模型搭建
参考文献[3]
为应对能源危机和日益严重的环境问题,各国都在积极发展可再生能源。其中,预计 到2030年,中国可再生 能 源 的 发 电 量 将 占 到30%以 上。然而,一 方 面,高 比 例 可 再 生 能 源 (如 风 电 和 光 伏 并网,会引起潮流 双 向 流 动、电 压 波 动、电 压偏高及网损偏高等问题;另一方面,弃风弃光严重,能源利用率低。针对以上问题,研究高比例可再生能源并网后 的 有 功—无功功率协调优化,在 减 少 弃风弃光以提高能源消纳能力、改善可再生能源并网后的节点电压质量等方面具有 十 分 重 要 的 现 实意义。
所谓无功优化,就是当电力系统的负荷情况及结构参数给定时,通过对控制变量的优化,找到在满足所有指定约束条件的前提下,使系统的一个或多个性能指标( 如电压质量最优、有功网损最小、年支出费用最少等) 达到最优时的无功调节手段[2]。涉及到无功补偿装置安装地点的选择、变压器分接头的调节配合、无功补偿容量的确定等,是一个多约束的非线性规划问 题[3]。目前,无功优化的算法主要分为 2 类: 一是传统的优化算法,如线性规划法、非线性规划法、混合整数 规划法、动态规划法等,这类算法的缺点是可能无法找到全局最优解; 二是人工智能的优化算法,如遗传算法、模拟退火、禁忌搜索、免疫算法等。随机搜索能较好地处理离散、多目标的优化问题是这类算法的一个共同点。
配电网有功—无功功率优化实际上包含有功功率优化和无功功率优化两部分:对有功功率优化而
言,本文以提高能源消纳能力为目的;而对于无功功率优化,作为电压优化控制的一种手段在降低网损、提高电压质量方面起着重要作用。有功—无功功率优化问题既需要处理连续变量,如分布式电源有功功率 和 无 功 功 率 输 出、静 止 无 功 补 偿 器无功功率输出,又需要处理离散变 量,如 变 压 器 分 接 头、并 联 电 容 器 /电抗器,而且原潮流方程是非线性非凸的,因而此问题是一个混合整数非线性非凸问题,是非确定多项式难题。
本文主要做的是考虑光伏出力波动性的配电网有功无功协调优化,在调度模型中考虑了光伏并网的波动性,并考虑用储能对其进行平抑,配电网调度模型中含有的设备主要包括:光伏逆变器、变压器、电容等设备,目标函数包括调压总成本、电压稳定性、网损等等,采用改进多目标粒子群算法,即小生境粒子群算法对其进行高效求解。
基于小生境粒子群优化算法的考虑光伏波动性的主动配电网有功无功协调优化研究
一、小生境粒子群优化算法(Niche PSO)的基本原理
小生境粒子群优化算法(Niche PSO)是对传统粒子群算法(PSO)的改进,旨在解决多峰优化问题。其核心思想是通过动态划分子群(Sub-swarms),实现多峰解的同步搜索。
- 子群形成机制:当粒子接近局部最优解时,若其适应度变化率低于阈值,则与邻近粒子形成子群。子群通过欧几里得距离判断粒子归属,并通过标准差(σ)动态调整子群半径以解决依赖性问题。
- 子群合并与冗余消除:若多个子群指向同一最优解,则通过合并机制整合信息。合并条件基于子群的收敛半径,合并后的子群综合历史经验,提升解的精度。
- 优势与适应性:Niche PSO通过独立子群避免早熟收敛,适用于高维、多峰问题,例如电力系统无功优化和参数反演。
二、光伏波动性对主动配电网的影响
光伏发电的波动性源于太阳辐射、天气变化等自然因素,其随机性和间歇性对配电网造成多方面挑战:
- 电压波动与闪变:光伏出力突变导致节点电压波动,可能引发电压越限、闪变及三相不平衡问题,影响工业设备运行和居民用电质量。
- 频率偏差:光伏功率波动降低系统惯量,导致频率调节能力减弱,尤其在光伏出力与负荷需求错位时(如白天过电压、夜晚欠电压)更为显著。
- 网损与电能质量:逆变器谐波注入和潮流双向流动加剧网损,同时增加配电网保护配置的复杂性。
三、主动配电网的结构与运行特性
主动配电网(Active Distribution Network, ADN)通过集成分布式电源(PV、储能)、灵活拓扑和智能控制技术,实现双向潮流管理:
- 核心特征:
- 双向潮流与灵活拓扑:支持分布式电源并网和负荷互动,通过电力电子设备(如换流器)调节潮流方向。
- 分层控制架构:管理系统协调分布式资源(如储能、电动汽车充电桩),实现故障隔离和电压无功优化。
- 技术支撑:虚拟电厂(VPP)和微电网技术通过聚合分布式资源参与电力市场,提升经济性和可靠性。
四、有功无功协调优化的目标与约束
- 目标函数:
- 经济性:最小化网损、调压成本及设备投资费用。
- 稳定性:抑制电压偏差,提升电压合格率。
- 可再生能源消纳:最大化光伏利用率,减少弃光率。
- 约束条件:
- 潮流方程:满足有功/无功功率平衡。
- 设备容量限制:逆变器无功出力范围、变压器分接头位置、储能充放电功率。
- 运行安全:电压幅值、频率偏差、线路传输容量。
五、Niche PSO在协调优化中的应用案例
- 无功优化:
- 以IEEE 30节点系统为例,Niche PSO通过动态调整子群半径,将电压越限节点从2个降至0,网损降低19.5%,综合成本节省16.52%。
- 微网群调度:
- 结合储能平抑光伏波动,Niche PSO在日前-日内双时间尺度调度中,优化光伏逆变器、SVC等设备,降低综合成本并提升电压稳定性。
- 配电网重构:
- 在高渗透率光伏场景下,Niche PSO通过模糊群搜索算法优化拓扑结构,减少重构动作次数,提升经济性和可靠性。
六、研究现状与挑战
- 现有成果:
- 模型预测控制(MPC) :滚动优化光伏和储能的出力,减少日前预测误差的影响。
- 多目标优化:结合麻雀搜索算法(SSA)和混沌变异,解决光伏随机性导致的局部收敛问题。
- 待解决问题:
- 不确定性建模:光伏出力预测误差和负荷波动的概率表征仍需改进。
- 算法实时性:Niche PSO在高维混合整数非线性规划中的计算效率需提升。
- 多时间尺度协调:如何整合秒级(逆变器控制)与小时级(储能调度)的优化仍需探索。
七、未来研究方向
- 数据驱动优化:结合深度学习预测光伏出力,构建动态子群划分策略。
- 多能源协同:扩展至冷热电联供系统,实现综合能源利用效率最大化。
- 市场机制融合:设计虚拟电厂参与辅助服务的竞价策略,提升经济收益。
结论
小生境粒子群优化算法通过子群划分和动态合并机制,有效解决了含光伏波动的主动配电网多目标优化问题。其在降低网损、提升电压稳定性方面表现显著,但仍需在实时性、不确定性建模等方面进一步突破。未来研究可结合预测控制与市场机制,推动配电网向高弹性、智能化方向发展。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]张海妮.基于改进的小生境粒子群算法在函数优化中的应用[J].河南科学,2018,36(04):499-504.
[2]郑能,丁晓群,郑程拓,管志成,蒋煜.含高比例光伏的配电网有功—无功功率多目标协调优化[J].电力系统自动化,2018,42(06):33-39+91.
[3]孙卓新,朱永强,倪一峰,叶青,刘颖.基于粒子群算法的含光伏电站的配电网无功优化[J].电力建设,2014,35(04):25-30.
[4]张涛,张东方,王凌云,徐雪琴,周远化,张晓林.基于改进小生境粒子群算法的主动配电网优化重构[J].信阳师范学院学报(自然科学版),2018,31(03):473-478.