💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
2. 随机规划(Stochastic Programming)
💥1 概述
随着可再生能源的不断发展和普及,电力系统的供需平衡问题变得越来越复杂。传统的电力系统优化调度模型通常只考虑了固定电源和负荷的情况,忽略了可再生能源的波动性和灵活性。因此,为了更好地应对可再生能源的挑战,需要研究灵活性供需平衡的电力系统优化调度模型。
该模型需要考虑以下因素:
1. 可再生能源的波动性和灵活性。可再生能源的产生受到天气等因素的影响,因此其产生量会出现波动。同时,可再生能源的输出也可以通过调整电站的运行方式进行灵活控制。
2. 负荷的波动性和灵活性。负荷的变化也会对电力系统的供需平衡造成影响。同时,用户也可以通过灵活调整用电时间等方式来降低负荷波动的影响。
3. 电力市场的运作机制。电力市场的运作机制对于电力系统的供需平衡也有重要影响。因此,需要考虑电力市场的定价机制、交易机制等因素。
基于以上因素,可以建立灵活性供需平衡的电力系统优化调度模型。该模型需要考虑以下几个方面:
随着可再生能源发电设备和电网集成技术的快速发展,由新能源主导的新型电力系统正逐渐形成。然而,可再生能源占比高且具有随机波动的特点显著增加了电力系统运行和调度的难度。传统的灵活资源,如常规装置的灵活性供给能力,已不再能够有效满足系统不断增长的灵活性需求。同时,电网在某些时段内灵活性严重不足,使得需求侧灵活性逐渐成为电力网调度研究的焦点。
国际能源署(IEA)将灵活性定义为电力网中灵活资源在一定时间尺度内满足灵活性需求的能力。对灵活性需求的量化是进行灵活性供需平衡分析的关键。
需求侧资源可以在操作充分性和经济效率方面取代发电侧资源,提供灵活性平衡。然而,大多数现有研究忽视了需求侧资源可以提供的灵活性供给能力。对需求侧资源参与电力系统优化调度的研究仍然集中在“功率平衡”上。这个问题属于对电力供需的静态过程,忽略了一定时间尺度内的供需波动特性,无法充分激发需求侧灵活性资源的调节潜力。
随着电力系统运行模式从匹配电源和负荷的单向模式转变为电源、电网、负荷和储能之间协调互动的双向模式,电网调度需要利用各种需求侧资源实现“灵活性平衡”,满足每个时段的灵活性爬坡需求。
通过将场景法和区间法结合起来量化电力系统的灵活性需求,并引入灵活性调整因子来代表各种资源参与灵活性调节的能力,建立了灵活性供需平衡约束。其次,考虑电动汽车等需求侧资源的灵活性供给能力,建立了考虑灵活性供需平衡的电力系统优化调度模型,以灵活性资源运行成本和电网灵活性不足惩罚成本的最佳平衡为目标函数。
将区间法与场景法结合量化灵活性需求,可以充分考虑各场景下的净负荷波动。在灵活性供需平衡约束下,电动汽车、常规可转移负荷等负荷侧资源参与需求响应,可提供一定的爬坡容量,有效降低了净负荷的波动。考虑需求侧资源的灵活性供给能力后,电网的灵活性整体得到改善,特别是在爬坡需求较大的早晚高峰时段,灵活性裕度得到较大提升。在小幅降低经济性的基础上,保证了电力系统的灵活性。该程序运行完美,质量高,附有详细的参考资料,并具有较强的可拓展性。参考文献:“新能源电力系统灵活性供需量化及分布鲁棒优化调度”完美复现了确定性模型部分,没有DRO部分。
一、灵活性供需平衡的定义与核心要素
1. 灵活性的定义
电力系统灵活性指系统快速响应供需功率波动的能力,核心目标是维持有功功率平衡。具体包括:
- 国际能源署(IEA) :经济成本约束下快速响应功率与电能波动的能力。
- 北美电力可靠性协会(NERC) :利用系统资源满足负荷变化的能力。
- 关键要素:调用资源的经济性、应对不确定性、调节速率与幅度。
高比例新能源系统的波动性显著增加灵活性需求,要求资源具备更快的调节能力(如秒级调频、分钟级爬坡)。
2. 灵活性供需平衡的内涵
- 需求侧:源于负荷波动(季节性/日内变化)和可再生能源(风电、光伏)的随机性。数学表达为净负荷 FL,t(总负荷减去新能源出力)的波动。
- 供给侧:涵盖“源-网-荷-储”四类资源:
- 源:燃气机组(快速启停)、水电(调节速率快)。
- 网:跨区域互联(平衡空间分布不均)。
- 荷:需求响应(可中断/平移负荷)。
- 储:电池储能(秒级响应)、抽水蓄能(小时级调节)。
- 平衡定义:在任意时间尺度下,灵活性供给需超过需求,即:
二、优化调度模型的基本框架
1. 确定性优化调度模型
以最小化运行成本为目标,基础模型包含:
-
目标函数:最小化常规机组发电成本:
-
约束条件:
2. 灵活性约束的引入
在高比例新能源系统中,需新增灵活性供需平衡约束:
- 灵活性供给量化:
需求响应潜力按通知时间分级(如30分钟响应潜力低于24小时响应)。 - 灵活性需求量化:
由净负荷波动区间确定,需覆盖预测误差与波动幅值。 - 平衡约束:
三、应对不确定性的优化方法
1. 鲁棒优化(Robust Optimization)
-
适用场景:当不确定性概率分布未知时,优化最坏情况下的性能。
-
模型形式:
其中 u 为调度决策, w 为风电预测误差等不确定参数。
-
应用案例:
含电转氢的综合能源系统中,以灵活性供需平衡为约束,采用基数不确定集描述风电误差,通过C&CG算法求解。
2. 随机规划(Stochastic Programming)
- 适用场景:已知不确定性概率分布时,优化期望成本。
- 模型框架:
- 第一阶段:日前调度(机组启停、储能计划)。
- 第二阶段:日内滚动调整(应对实时波动)。
- 多时间尺度协调:
结合模型预测控制(MPC),实现“日前规划-日内滚动”的闭环优化。
3. 两阶段鲁棒优化进阶模型
- 决策变量分层:
第一阶段优化火电灵活性改造与抽蓄状态;第二阶段优化资源出力。 - 目标函数:兼顾经济性(运行成本)、环保性(碳排放)、灵活性(缺额风险)。
四、关键技术进展与实际应用
1. 多时间尺度协调
- 分层控制框架:
天级调度(机组组合)→ 小时级优化(储能充放电)→ 分钟级调频(需求响应)。 - 案例:贵州电网专利技术通过信息传递与目标分解实现多尺度协调。
2. AI辅助调度
-
算法创新:
Transformer架构优化预测精度;多智能体系统(协调者-工作者模式)提升任务并行效率90.2% -
应用方向:
- 风光出力短期预测(降低净负荷不确定性)。
- 灵活性资源动态匹配(如储能充放电策略)。
3. 实际资源应用场景
- 储能:
- 发电侧:平抑风光波动(减少弃电率)。
- 电网侧:提供调频服务(响应速度优于火电)。
- 需求响应:
工商业可中断负荷在冬季峰值时段贡献189MW潜力(高置信水平)。 - 跨能源耦合:
电转氢(Power-to-Gas)作为“灵活性电源”,平衡日内波动。
五、挑战与未来方向
- 异质资源协同:
灵活性资源(如储能、燃气机组)的调节特性(功率/能量/速率)需统一量化。 - 市场机制设计:
灵活性作为独立商品交易,需建立容量补偿与辅助服务市场。 - 极端场景鲁棒性:
风光出力极端波动下,需结合CVaR(条件风险价值)量化灵活性缺额风险。 - 多能互补扩展:
电-热-气系统联合调度(如储热系统提升热电解耦能力)。
结论
考虑灵活性供需平衡的电力系统优化调度模型,核心在于量化不确定性(风光波动、负荷变化)并协同异质资源(源网荷储)。通过鲁棒优化、随机规划等方法嵌入灵活性约束,结合多时间尺度协调与AI技术,可提升系统经济性、可靠性与低碳性。未来需深化市场机制设计与跨能源耦合研究,以支撑极高比例可再生能源系统的稳定运行。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]童宇轩,胡俊杰,刘雪涛等.新能源电力系统灵活性供需量化及分布鲁棒优化调度[J].电力系统自动化,2023,47(15):80-90.