- 博客(35)
- 收藏
- 关注
原创 GitCode疑难问题诊疗
(注:每个二级标题下可展开3-5个具体技术点,实际撰写时应包含真实案例和解决方案代码示例)仓库克隆失败场景分析 HTTP/SSH协议错误代码解读 403/404错误深层原因排查。分支合并冲突的深度解决 .gitignore失效问题处理方案 大文件存储异常排查路径。通用问题排查流程(适用于大多数场景) 版本兼容性验证方法 网络连接与权限检查清单。仓库体积过大的清理技术 Git LFS配置异常处理 缓存机制失效的修复方法。SSH密钥认证失败排查 双因素认证异常解决方案 敏感信息误提交的补救措施。
2025-08-03 21:51:45
200
原创 JavaScript性能优化实战
监控内存使用:通过Chrome DevTools的Memory面板定期进行堆快照分析,识别内存泄漏点。使用事件委托替代大量事件监听器,通过事件冒泡机制在父元素统一处理。高频事件使用防抖(debounce)和节流(throttle)控制触发频率。优化对象生命周期:对象池技术复用高频创建销毁的对象,如游戏中的子弹实例。避免在闭包中保留不必要的大对象引用。避免内存泄漏:及时解绑事件监听器,清除定时器,移除无效的DOM引用。减少主线程阻塞:时间切片(Time Slicing)技术将长任务分解为可中断的短任务。
2025-08-02 22:14:22
531
原创 IDM下载失败排查
查看IDM日志文件(默认路径:C:\Users[用户名]\AppData\Roaming\IDM)通过Fiddler/Wireshark抓包分析请求失败原因。尝试手动添加Referer或User-Agent信息。调整IDM最大连接数(默认为8,可降低至4测试)尝试更换下载保存路径(避免中文或特殊字符路径)关闭可能占用文件的程序(如杀毒软件实时扫描)重置IDM设置(选项→常规→重置设置)检查下载链接是否失效或需要身份验证。尝试关闭防火墙或安全软件临时测试。检查浏览器扩展是否被禁用。文件权限或存储路径错误。
2025-08-02 22:13:36
213
原创 大模型 + 垂直场景:搜索 / 推荐 / 营销 / 客服领域开发有哪些新玩法?
传统客服系统依赖规则和简单对话模型,而大模型能够处理更复杂的自然语言交互。大模型在搜索领域的应用可以显著提升搜索结果的准确性和用户体验。利用大模型进行语义理解和上下文关联,能够实现更精准的意图识别。传统推荐系统依赖协同过滤和内容匹配,而大模型能够更好地建模用户兴趣和物品特征。动态兴趣建模能够捕捉用户行为的短期和长期变化,增强推荐的时效性。行业需关注模型偏见和伦理问题,确保技术应用的公平性和安全性。在营销领域,大模型可以生成高质量的广告文案和创意内容,提升投放效果。
2025-08-02 22:12:57
269
原创 从基础功能到自主决策, Agent 开发进阶路怎么走?
开发强化学习训练框架(Q-learning/PPO)实现基础通信协议(HTTP/WebSocket)实现简单规则驱动的任务(如定时任务、条件触发)掌握编程语言基础(Python/Java等)集成传感器数据处理(视觉/语音/IoT)开发多模态输入解析(文本+图像+语音)构建环境建模系统(SLAM/语义地图)实现实时数据流处理(消息队列/流计算)构建状态管理机(有限状态机/行为树)实现多智能体协作协议(合同网/拍卖)构建安全防护系统(异常检测/熔断)集成机器学习模型(分类/回归)设计在线学习管道(持续训练)
2025-08-02 22:11:44
210
原创 AI IDE+AI 辅助编程,真能让程序员 “告别 996” 吗?
AI IDE 的概念:集成 AI 功能的集成开发环境(如 GitHub Copilot、Amazon CodeWhisperer)AI 辅助编程的范围:代码生成、自动补全、错误检测、优化建议等主流工具及技术栈(如大语言模型、代码静态分析等)
2025-08-02 22:11:12
174
原创 c语言-数据结构-一篇文章带你玩转希尔排序和插入排序
本文介绍了插入排序和希尔排序两种排序算法的实现方式及时间复杂度分析。插入排序通过逐个插入元素构建有序序列,时间复杂度为O(N²)最坏情况,O(N)最好情况。希尔排序是插入排序的改进版,通过预排序(分组排序)提高效率,包含多次预排序和最终插入排序两个阶段。预排序通过动态调整gap值(初始为n/2并逐步减半)实现分组,使数据趋于有序。希尔排序的时间复杂度约为O(N^1.3),优于直接插入排序。文中通过图示和代码示例详细说明了两种排序的具体实现过程及性能优化原理。
2025-07-30 17:33:46
1174
原创 c语言-数据结构-二叉树OJ之子树与二叉树的构建
本文介绍了两个二叉树相关的OJ题解。第一部分"另一棵树的子树"通过递归比较两棵树的节点值,判断一棵树是否是另一棵的子树。第二部分"二叉树的构建及遍历"展示了如何根据前序遍历字符串构建二叉树,并进行中序遍历输出。两题均采用递归方法解决,涉及二叉树的基本操作和遍历技巧。
2025-07-29 14:33:13
470
原创 程序员C盘瘦身大赛
《程序员C盘瘦身指南》摘要 针对开发者常见的C盘空间不足问题,本文系统介绍了优化方案。首先分析主要占用源:系统临时文件、开发工具默认安装路径、Git缓存等。提供手动清理方案(迁移IDE缓存、调整虚拟内存)和自动化工具(TreeSize、PowerShell脚本),重点讲解mklink符号链接技术实现目录迁移。通过真实案例展示如何为npm、node_modules等开发依赖瘦身,同时提醒注意系统文件安全。最后强调"分析-迁移-清理"的优化闭环,并附实用脚本和工具资源。特别适合长期受C盘空间
2025-07-25 22:09:50
304
原创 c语言-数据结构-沿顺相同树解决对称二叉树问题的两种思路
本文介绍了两种判断二叉树是否对称的算法思路。第一种方法是先翻转根节点的任意一侧子树(左或右),然后比较翻转后的子树与另一侧子树是否相同;第二种方法直接比较左右子树是否镜像对称,即比较左子树的左节点与右子树的右节点,以及左子树的右节点与右子树的左节点。两种方法都通过递归实现,时间复杂度均为O(n)。文中提供了两种方法的C语言实现代码,并配有图示说明。
2025-07-25 22:08:07
589
原创 PyCharm高效入门指南大纲
代码重构工具:重命名、提取方法/变量(Ctrl+Alt+M/V)智能代码补全(Ctrl+Space触发上下文感知建议)实时错误检查与快速修复(Alt+Enter快捷操作)快捷键记忆(Ctrl+Shift+A查找所有动作)使用版本控制集成(Git/GitHub)管理代码。远程开发配置(SSH/Docker解释器支持)任务管理集成(Jira/Trello插件连接)共享运行配置(.idea文件夹版本控制)模板化编程(文件/代码片段实时模板)性能分析工具(CPU/内存使用快照)配置断点调试(条件断点/日志断点)
2025-07-22 11:15:32
248
原创 c语言-数据结构-二叉树OJ
本文讲解了二叉树相关的五道OJ题目:1.单值二叉树判断,使用分冶法递归解决;2.二叉树最大深度,类似求树高;3.翻转二叉树,通过交换左右子树实现;4.判断两树是否相同,比较结构与节点值;5.二叉树前序遍历,需注意传参问题。每题均给出代码实现和解题思路,重点分析了递归条件和参数传递的注意事项,如单值树的递归展开图、相同树判断条件的选取以及前序遍历中变量传递的地址问题等。
2025-07-22 11:14:09
838
原创 AI的出现,是否能替代IT从业者?
摘要:AI在IT领域的应用日益广泛,如自动化运维、代码生成和智能测试,但无法完全替代IT从业者。复杂系统设计、业务需求分析和伦理安全治理等核心能力仍需人类主导。AI与IT从业者的协作模式(如AI辅助开发工具)正提升效率并催生新岗位。专家观点(如Gartner)指出AI是增补而非替代,建议从业者聚焦创新与跨界技能,适应人机协同的未来趋势。
2025-07-19 10:56:44
133
原创 c语言-数据结构-如何用分冶法求得二叉树的节点数与高度?
本文介绍了三种二叉树问题的分治解法:1.二叉树高度计算:比较左右子树高度并加1;2.节点总数统计:左右子树节点数之和加1;3.第k层节点数计算:递归求左右子树的k-1层节点数之和。通过分治思想,将问题分解为子问题,避免了直接遍历的复杂性,提高了算法效率。文中用学校管理层级比喻解释了递归原理,并给出了详细的递归过程和代码实现分析。
2025-07-19 10:54:57
694
原创 用AI破解数据质量难题
摘要:AI技术正成为解决企业数据质量难题的关键工具。传统数据清洗方法效率低下,而AI通过机器学习、自然语言处理和深度学习等技术,可自动检测异常、标准化文本和预测缺失值。金融、电商和医疗等行业已成功应用AI提升数据质量,减少风险并提高效率。企业需选择合适的AI工具,建立评估指标,并持续优化模型。未来,智能化的数据治理平台将实现端到端质量控制,企业需提升数据素养以应对这一变革。
2025-07-16 21:16:40
220
原创 c语言-数据结构-二叉树的遍历
本文介绍了二叉树的四种遍历方式:前序、中序、后序和层序遍历,重点讲解了前三种递归实现的遍历方法。前序遍历顺序为根-左-右,中序遍历为左-根-右,后序遍历为左-右-根。文章通过图示详细说明了每种遍历的执行过程:前序遍历先访问根节点再递归左右子树,中序遍历先递归左子树再访问根节点,后序遍历先递归左右子树最后访问根节点。每种遍历方式都配有对应的代码实现和节点访问顺序图示,帮助理解二叉树遍历的递归过程。
2025-07-16 21:14:21
688
原创 数据结构-为什么双指针法可以用来解决环形链表?-使用O(1)的空间复杂度去解决环形链表的思路
本文介绍了环形链表检测的双指针解法,重点分析了快慢指针不同步长下的相遇条件。当快指针每次走2步、慢指针每次走1步时,二者必然相遇。若快指针步长增大,相遇情况会因初始距离N和环长C的奇偶性而变得复杂:步长为3时,N为偶数或C为奇数才能相遇;步长为4时,需要根据N和C是否为3的倍数来判断。文章通过数学推导证明了不同步长组合下的相遇条件,并提供了代码实现示例。这种分析方法有助于深入理解环形链表的检测机制。
2025-06-12 21:25:26
1837
原创 如何使用deepseek满血版
DeepSeek满血版是一款多功能AI平台,提供文本生成、代码辅助和数据分析等服务。用户可通过官网或应用商店下载,完成注册登录后即可使用。平台支持参数调整和结果优化,高级功能包括结构化提示、示例引导和分步指令等技巧。使用时需遵守内容政策,敏感领域输出建议人工复核。该工具适用于各类智能生成需求,通过多次迭代可获得更优质结果。
2025-06-11 23:21:19
666
原创 数据结构-链表OJ-回文链表,如何将时间复杂度控制为O(N),空间复杂度控制为O(1)?
本篇讲解了用 O(n) 时间复杂度和 O(1) 空间复杂度解决回文链表的思路方法
2025-06-10 23:08:05
572
原创 数据结构-相交链表OJ-如何用环形链表来解决相交链表?
今天讲解了能够将时间复杂度为控制在 O(m + n) 、空间复杂度 控制在O(1) 的解决相交链表的两种解法,同时涉及了快慢指针的思想
2025-06-09 23:13:27
750
原创 数据结构-如果将堆结构应用到TOP-K问题上会怎样?
本文讲解了如何利用堆结构高效解决TOP-K问题(求前K个最大/最小元素)。针对大数据量场景(如100亿数据),传统排序方法内存消耗过大,而堆结构只需维护K个元素的空间。具体实现时:找前K个最大元素建小堆,将剩余元素逐个与堆顶(最小值)比较,更大则替换并调整;反之,找前K个最小元素建大堆。该方法避免了全局排序,时间复杂度优化至O(NlogK)。文中给出c语言代码实现包括建堆、调整和比较替换流程,适用于海量数据场景。
2025-06-05 18:27:34
997
原创 数据结构-二叉树-如何用c语言玩转堆排序?
堆排序是利用堆数据结构实现的高效排序算法,时间复杂度稳定为O(NlogN),适合大规模数据排序。相比冒泡排序等O(N²)算法,堆排序在数据量大时优势明显。实现时需注意:升序排序应建大堆而非小堆,通过交换堆顶与堆尾元素并调整堆结构完成排序。建堆方式推荐向下调整法,其时间复杂度为O(N),优于向上调整法的O(NlogN)。堆排序空间复杂度低且性能稳定,适用于各类排序场景。后续将介绍基于堆排序思想的topk问题解决方案。
2025-06-04 20:31:01
940
原创 数据结构-二叉树-C语言对堆的代码实现
本文补充讲解了二叉树的相关计算练习,包括结点数量与高度的计算。重点介绍了二叉树的两种存储方式(顺序存储和链式存储)及其适用场景,进而引入堆的概念。堆是一种特殊的完全二叉树,分为大根堆和小根堆,要求父结点始终大于或小于子结点。文章详细讲解了堆的插入、删除操作以及向上调整和向下调整算法,并以小根堆为例展示了c语言代码对堆的实现。最后简要提及堆的初始化、销毁等基础操作,为后续堆排序内容做铺垫。
2025-06-01 20:00:22
1170
原创 数据结构-树与二叉树
本文介绍了树与二叉树的基本概念和应用。树是一种非线性数据结构,由根节点和子树组成,具有层次性。文章详细讲解了树的相关术语(如度、深度、父节点、子节点等)和特性,并指出正确的树结构应避免子节点相交等错误。通过"左孩子右兄弟"法可实现树的遍历。重点介绍了二叉树的两种特殊类型:满二叉树(每层结点达最大值)和完全二叉树(前N-1层满,最后一层连续)。最后给出了二叉树结点数量的计算方法和重要结论(度为0的结点数=度为2的结点数+1)。
2025-05-31 20:30:38
861
原创 c语言-数据结构-链表OJ1
摘要:本文介绍了四种链表OJ题的解法。1.移除链表元素:采用直接删除或新链表尾插法;2.寻找中间节点:推荐快慢指针法;3.查找倒数第k个节点:使用快慢指针保持间距k;4.反转链表:提供两种指针操作方式。每种方法都给出思路图解和代码示例,重点推荐快慢指针等高效解法,同时分析不同方法的复杂度。
2025-05-25 18:20:28
430
原创 c语言之单链表(2)
本篇文章是对上篇文章单链表的补充,并且介绍实现了在指定位置pos以及前后插入删除的功能,后续会继续推出链表oj,双向链表等等讲解。
2025-04-16 21:02:19
527
原创 小白速看!——>一篇文章带你玩转时间复杂度与空间复杂度【数据结构篇】
小白速览——>本文介绍了详细介绍了时间复杂度和空间复杂度,它们是数据结构设计的基础,是理解与设计高效算法的基础,在校招与考研中也占据一席之地。该文非常适合小白阅读,快速掌握时间复杂度与空间复杂度。内容较多,请耐心观看!
2025-04-06 21:37:17
765
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人