协方差矩阵

前言:学习记录,欢迎指正,讨论

一维:均值,标准差,方差(一个变量)

均值:\bar{X}=\frac{\sum_{i=1}^{n}Xi}{n}     描绘样本集合的中间点

标准差: S = \sqrt{\frac{\sum_{i=1}^{n}{(Xi-\bar{X})_{}}^{2}}{n-1}}    描述样本集合的各个样本点到均值的距离平均,即“散布度”

方差:S= \frac{\sum_{i=1}^{n}{(Xi-\bar{X})_{}}^{2}}{n-1}      之所以除以n-1而不是n,是因为这样能使我们以较小的样本集更好地逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。

二维:协方差(两个变量)

均值,标准差,方差只能用来描述一个变量。需要描述两个变量之间的关系时就要引入协方差。

协方差是用来度量两个随机变量关系的统计量,仿照方差的定义:

var(X)=\frac{\sum_{i=1}^{n}(Xi-\bar{X})(Xi-\bar{X})}{n-1}

协方差可以这样定义:

cov(X,Y)=\frac{\sum_{i=1}^{n}(Xi-\bar{X})(Yi-\bar{Y})}{n-1}

协方差结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义)。如果结果为负值, 就说明两者是负相关。如果为0,则两者之间没有关系,就是统计上说的“相互独立”。

从定义可以看出

1.cov(X,X)=var(X);

2.cov(X,Y) = cov(Y,X);

多维:协方差矩阵(多个变量)

如果有三个维度,则协方差矩阵为:

C=\begin{pmatrix} cov(X,X)& cov(X,Y) &cov(X,Z) \\ cov(Y,X)&cov(Y,Y) &cov(Y,Z) \\ cov(Z,X)& cov(Z,Y) &cov(Z,Z) \end{pmatrix}

则协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差。

计算协方差矩阵首先要搞清楚样本和维度(变量),然后计算每个维度的均值

如班级成绩统计表

语文(X)数学(Y)英语(Z)音乐(K)
小明89799384
小红80829395
小丽73759482

三个样本(小明,小红,小丽)4个维度(语文,数学,英语,音乐)

则该协方差矩阵是四行四列的矩阵。

理解协方差矩阵的关键在于它的计算不同维度之间的协方差

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值