
opencv
文章平均质量分 72
高菘菘
AIGC,机器视觉领域爱好者与开发者,目前从事AIGC以及区块链WEB3相关行业,欢迎访问我的网站:www.lothough.cn
担任Devpress社区专家,华为云云享专家,FISCO社区年度MVP与技术专家,同时也是Ascend社区以及MindSpore社区开发者与创作者,平时会免费发一些技术教程与实操心得在各类社区
曾荣获过多项开发者赛事国奖以及国际赛事奖项,多次荣获腾讯云区块链软件开发方面,阿里云数据处理方面,华为昇腾AI创新方面,数学建模方面以及机器视觉方面奖项
大家有问题可以随时直接私信我,看见就会回,感谢大家的关注与支持,有事添加我微信:GAOSIR369
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
计算机机器视觉——构建数字识别项目(OpenCV入门实践)
本文介绍了一个基于OpenCV的计算机视觉入门项目——数字识别。通过逐步引导,读者将了解OpenCV的安装与配置、数据集的准备、模型的训练与测试,以及如何使用训练好的模型进行数字识别。项目旨在帮助初学者掌握OpenCV的基础知识和计算机视觉任务的基本流程,为进一步深入学习和应用计算机视觉技术打下坚实基础。原创 2024-01-26 18:06:10 · 877 阅读 · 0 评论 -
OpenCV项目实践——物体检测与跟踪
本文将带领你完成一个基于OpenCV的物体检测与跟踪项目。我们将使用OpenCV的强大功能,从基础物体检测到动态跟踪,逐步深入探索计算机视觉的奥秘。通过这个项目,你将了解物体检测与跟踪的基本原理、方法和技术,并亲自动手实现一个实用的物体检测与跟踪系统。原创 2024-01-26 18:18:43 · 1237 阅读 · 0 评论 -
使用OpenCV实现一个简单的实时人脸跟踪
该案例详细介绍了如何使用OpenCV库进行实时人脸跟踪。通过加载预训练的Haar特征级联分类器,系统能够实时检测和跟踪视频流中的人脸。在每一帧中,人脸被快速准确地检测出来,并通过跟踪算法持续更新其在视频中的位置。该技术在实际应用中具有广泛的应用前景,如视频通话、智能监控、人机交互等,能够提供高效、准确的人脸跟踪功能。通过这个案例,读者可以深入了解实时人脸跟踪的基本原理和技术实现,为进一步的应用和研究打下基础。原创 2024-01-26 18:34:51 · 2082 阅读 · 0 评论 -
基于OpenCV的高压电力检测项目案例
本文详细介绍了如何使用OpenCV库进行高压电力设备的自动化检测。项目目标是开发一个准确、高效的系统,用于实时监测高压电力设备,及时发现潜在的异常,并触发报警。通过使用OpenCV进行图像处理和特征提取,结合机器学习算法,实现了对高压电线的扭曲度、颜色变化等关键特征的检测。此外,系统还具备实时报警功能,确保及时发现和处理异常情况。原创 2024-01-31 23:23:26 · 1891 阅读 · 2 评论 -
利用OpenCV实现物流与生产线自动化的革命性突破
随着人工智能和计算机视觉技术的飞速发展,OpenCV已成为实现物流和生产线自动化的关键工具。本文将介绍如何利用OpenCV实现机器的循环工作,解决故障,以及在工厂中的实际应用。通过这些技术,企业可以显著提高生产效率,降低成本,并确保产品质量。原创 2024-01-30 15:20:50 · 2165 阅读 · 0 评论 -
利用OpenCV检测物流过程中的暴力拆箱和暴力拿放行为
本文详细介绍了如何利用OpenCV在物流过程中检测暴力拆箱和暴力拿放行为。文章通过搭建平台、配置环境、编写和部署代码,实现了对物流过程的实时监控。同时,通过分析大量的正常和异常行为视频数据,训练出了一个准确度较高的深度学习模型,从而有效地识别出异常行为。原创 2024-01-30 15:01:28 · 440 阅读 · 0 评论 -
使用OpenCV实现人脸特征点检测与实时表情识别
本文介绍了如何利用OpenCV库实现人脸特征点检测,并进一步实现实时表情识别的案例。首先,通过OpenCV的Dlib库进行人脸特征点的定位,然后基于特征点的变化来识别不同的表情。这种方法不仅准确度高,而且实时性好,可以广泛应用于人脸表情分析、人机交互等领域。原创 2024-03-15 14:43:15 · 1954 阅读 · 3 评论 -
基于opencv的手势识别
实现简单手势识别,并在摄像头捕捉的视频中描绘出手部轮廓为线条的示例。该代码会读取摄像头流,然后检测出手部,并用线条描绘出手的轮廓。首先,你需要安装OpenCV库。原创 2024-03-13 22:06:25 · 973 阅读 · 1 评论 -
基于Python和OpenCV的产品码识别与验证案例
本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。原创 2024-03-15 14:50:58 · 4032 阅读 · 86 评论